Chemical industry helped by small invisible tube

January 24, 2002

Chemists at Utrecht University have developed a catalyst for fine chemistry. Tiny tubes of graphite are the carrier for this catalyst. PhD student Tijmen Ros successfully tested the catalyst with a standard reaction. Fellow researchers are now making the catalyst suitable for the production of cinnamon alcohol, an aromatic substance and flavouring.

According to the researchers from Utrecht, carbon nanofibres will replace active carbon as a carrier for catalysts. Carbon nanofibres are small tubes made from graphite. Several tubes together from a sponge-like material with a large internal surface. In the optimum case a gram of tubes has a surface area of 200 m2. The researchers fix the catalyst, for example the metal rhodium, to the surface. Many small metal particles can be placed on a large surface and that produces a good catalyst.

Tijmen Ros investigated how effective the catalyst was in the hydrogenation of cyclohexene. Hydrogenation is a widely used reaction in the chemical industry. An example of hydrogenation is the hardening of fat to make butter from vegetable or animal oils. Colourings, aromatic substances and flavourings are also made by means of hydrogenation. Cyclohexene is a simple molecule used by the researchers to test the catalyst.

The catalyst turned out to be so effective that the supply of new hydrogen and not the catalyst was the rate-limiting step in the hydrogenation process.

The researchers first of all tested the carbon nanofibres with pure metal particles and then with metal complexes. Fine chemistry often uses pure metal particles but would rather work with complexes, as these are better at steering the reaction. A complex bound to carbon nanofibres makes it possible to reuse the catalyst. Although the complex used by the chemists appeared to have lost its activity, the researchers expect to be able to make active complexes in the future.

In the meantime, the Utrecht research group is investigating the industrially important hydrogenation of cinnamon aldehyde into cinnamon alcohol, a substance which tastes and smells like cinnamon. Most large companies are waiting until the efficacy of carbon nanofibres as a carrier for catalysts has been proven. The researchers expect that this will be the case within ten years.
The defence of the doctoral thesis will take place on 16 January 2002. Mr Ros' supervisors are Prof. D.C. Koningsberger and Prof. J.W. Geus.

The research was funded by the Netherlands Organisation for Scientific Research (NWO).

Netherlands Organization for Scientific Research

Related Graphite Articles from Brightsurf:

Next-gen smartphones to keep their cool
Multilayered carbon material could be the perfect fit for heat management in electronic devices.

Ways to improve petroleum coke combustibility studied with presence of metal catalysts
The fixed fluidized bed technology is already widely used overseas, but is relatively new for the Russian oil industry.

Solvation rearrangement brings stable zinc/graphite batteries closer to commercial grid storage
A research team led by Prof. CUI Guanglei and ZHAO Jingwen from Qingdao Institute of Bioenergy and Bioprocess Technology (QIBEBT), Chinese Academy of Sciences (CAS) proposed an approach of solvation rearrangement that brings stable zinc/graphite batteries closer to commercial grid storage.

New advance in superconductors with 'twist' in rhombohedral graphite
An international research team led by The University of Manchester has revealed a nanomaterial that mirrors the 'magic angle' effect originally found in a complex man-made structure known as twisted bilayer graphene -- a key area of study in physics in recent years.

Serendipity broadens the scope for making graphite
Curtin University researchers have unexpectedly discovered a new way to make crystalline graphite, an essential material used in the making of lithium ion batteries.

Russian scientists identified energy storage mechanism of sodium-ion battery anode
Scientists unveiled pseudocapacitive behavior of hard carbon anode materials for sodium-ion batteries (SIB), a new promising class of electrochemical power sources.

Mysterious mechanism of graphene oxide formation explained
Natural graphite, used as the precursor for graphene oxide production, is a highly ordered crystalline inorganic material, which is believed to be formed by decay of organic matter.

Using Jenga to explain lithium-ion batteries
Tower block games such as Jenga can be used to explain to schoolchildren how lithium-ion batteries work, meeting an educational need to better understand a power source that has become vital to everyday life.

Skoltech scientists get a sneak peek of a key process in battery 'life'
Researchers from the Skoltech Center for Energy Science and Technology (CEST) visualized the formation of a solid electrolyte interphase on battery-grade carbonaceous electrode materials using in situ atomic force microscopy (AFM).

Ultrasonic technique discloses the identity of graphite
A group of researchers, led by Osaka University, created a high-quality defect-free monocrystalline graphite, and measured the elastic constant, demonstrating that the determined value of monocrystalline graphite was above 45 gigapascal (GPa), which was higher than conventionally believed.

Read More: Graphite News and Graphite Current Events is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to