Canadian researchers first to complete the human metabolome

January 24, 2007

Researchers at the University of Alberta, in Edmonton, Canada, have announced the completion of the first draft of the human metabolome, the chemical equivalent of the human genome.

The metabolome is the complete complement of all small molecule chemicals (metabolites) found in or produced by an organism. By analogy, if the genome represents the blueprint of life, the metabolome represents the ingredients of life.

The scientists have catalogued and characterized 2,500 metabolites, 1,200 drugs and 3,500 food components that can be found in the human body.

The research is published in the journal Nucleic Acids Research.

The researchers believe that the results of their work represent the starting point for a new era in diagnosing and detecting diseases.

They believe that the Human Metabolome Project (HMP), which began in Canada in 2004, will have a more immediate impact on medicine and medical practices than the Human Genome Project, because the metabolome is far more sensitive to the body's health and physiology.

"Metabolites are the canaries of the genome," says Project Leader Dr. Wishart, professor of computing science and biological sciences at the University of Alberta and Principal Investigator at NRC, National Institute for Nanotechnology. "A single base change in our DNA can lead to a 100,000X change in metabolite levels."

This $7.5 Million project funded by Genome Canada through Genome Alberta, the Canada Foundation for Innovation (CFI), Alberta Ingenuity Centre for Machine Learning, and the University of Alberta will have far reaching benefits to patient care.

"The results of this research will have a significant impact on the diagnosis, prediction, prevention and monitoring of many genetic, infectious and environmental diseases," stated Dr. David Bailey, President and CEO of Genome Alberta.

The metabolome is exquisitely sensitive to what a person eats, where they live, the time of day, the time of year, their general health and even their mood. The HMP is aimed at allowing doctors to better diagnose and treat diseases.

"Most medical tests today are based on measuring metabolites in blood or urine," Wishart says. "Unfortunately, less than 1% of known metabolites are being used in routine clinical testing. If you can only see 1% of what's going on in the body, you're obviously going to miss a lot."

By measuring or acquiring chemical, biological and disease association data on all known human metabolites, the HMP Consortium, which consists of some 50 scientists based at the University of Alberta and the University of Calgary, has spent the past two and half years compiling the remaining 95% of all known metabolites in the human metabolome. Detailed information about each of the 2500 metabolites identified so far can be found on the Human Metabolome Database (HMDB) at http://www.hmdb.ca.

"With the data in the HMDB, anyone can find out what metabolites are associated with which diseases, what the normal and abnormal concentrations are, where the metabolites are found or what genes are associated with which metabolites," Wishart says.

"It's the first time that this sort of data has been compiled into one spot. By decoding the human metabolome, we can identify and diagnose hundreds of diseases in a matter of seconds at a cost of pennies," Wishart added.
-end-
For further comment, Dr. David Wishart can be reached at 780-492-0383 or david.wishart@ualberta.ca.

University of Alberta

Related Genome Articles from Brightsurf:

Genome evolution goes digital
Dr. Alan Herbert from InsideOutBio describes ground-breaking research in a paper published online by Royal Society Open Science.

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.

Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.

A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.

Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.

A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.

How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.

Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.

Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.

Read More: Genome News and Genome Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.