Earth's getting 'soft' in the middle

January 24, 2008

Washington, D.C.--Since we can't sample the deepest regions of the Earth, scientists watch the velocity of seismic waves as they travel through the planet to determine the composition and density of that material. Now a new study suggests that material in part of the lower mantle has unusual electronic characteristics that make sound propagate more slowly, suggesting that the material there is softer than previously thought. The results call into question the traditional techniques for understanding this region of the planet. The authors, including Alexander Goncharov from the Carnegie Institution's Geophysical Laboratory, present their results in the January 25, 2008, issue of Science.

The lower mantle extends from about 400 miles to 1800 miles (660-2900 kilometers) into Earth and sits atop the outer core. Pressures and temperatures are so brutal there that materials are changed into forms that don't exist in rocks at the planet's surface and must be studied under carefully controlled conditions in the laboratory. The pressures range from 230,000 times the atmospheric pressure at sea level (23 GPa), to 1.35 million times sea-level pressure (135 GPa). And the heat is equally extreme--from about 2,800 to 6,700 degrees Fahrenheit (1800K-4000K).

Iron is abundant in the Earth, and is a major component of the minerals ferropericlase and the silicate perovskite in the lower mantle. In previous work, researchers found that the outermost electrons of iron in ferropericlase are forced to pair up under the extreme pressures creating a so-called spin-transition zone within the lower mantle.

"What happens when unpaired electrons--called a high-spin state--are forced to pair up is that they transition to what is called a low-spin state. And when that happens, the conductivity, density, and chemical properties change," explained Goncharov. "What's most important for seismology is the acoustic properties--the propagation of sound. We determined the elasticity of ferropericlase through the pressure-induced high-spin to low-spin transition. We did this by measuring the velocity of acoustic waves propagating in different directions in a single crystal of the material and found that over an extended pressure range (from about 395,000 to 590,000 atmospheres) the material became 'softer'--that is, the waves slowed down more than expected from previous work. Thus, at high temperature corresponding distributions will become very broad, which will result in a wide range of depth having subtly anomalous properties that perhaps extend through most of the lower mantle."

The results suggest that scientists may have to go back to the drawing board to model this region of the Earth.
-end-
This research was partly funded by Carnegie Institution of Washington, the National Science Foundation and the U.S. Department of Energy/National Nuclear Security Agency through the Carnegie/DOE Alliance Center' and the W. M. Keck Foundation.

The Carnegie Institution (www.CIW.edu) has been a pioneering force in basic scientific research since 1902. It is a private, nonprofit organization with six research departments throughout the U.S. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Planet Articles from Brightsurf:

Astronomers discover planet that never was
What was thought to be an exoplanet in a nearby star system likely never existed in the first place, according to University of Arizona astronomers.

The ocean responds to a warming planet
The oceans help buffer the Earth from climate change by absorbing carbon dioxide and heat at the surface and transporting it to the deep ocean.

About the distribution of biodiversity on our planet
Large open-water fish predators such as tunas or sharks hunt for prey more intensively in the temperate zone than near the equator.

Sub-Neptune sized planet validated with the habitable-zone planet finder
A signal originally detected by the Kepler spacecraft has been validated as an exoplanet using the Habitable-zone Planet Finder.

Feeding the world without wrecking the planet is possible
A study led by researchers from the Potsdam Institute for Climate Impact Research (PIK) now suggests a comprehensive solution package for feeding 10 billion people within our planet's environmental boundaries.

A planet that should not exist
Astronomers detected a giant planet orbiting a small star. The planet has much more mass than theoretical models predict.

A Goldilocks zone for planet size
Harvard University researchers described a new, lower size limit for planets to maintain surface liquid water for long periods of time, extending the so-called Habitable or 'Goldilocks'' Zone for small, low-gravity planets.

A second planet in the Beta Pictoris system
A team of astronomers led by Anne-Marie Lagrange, a CNRS researcher, has discovered a second giant planet in orbit around β Pictoris, a star that is relatively young (23 million years old) and close (63.4 light years), and surrounded by a disk of dust.

How plants are working hard for the planet
As the planet warms, plants are working to slow the effect of human-caused climate change -- and research published today in Trends in Plant Science has assessed how plants are responding to increasing carbon dioxide (CO2).

More support for Planet Nine
Mike Brown and Konstantin Batygin offer further clues about Planet Nine.

Read More: Planet News and Planet Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.