Nav: Home

Human rotavirus manipulates immune response to maintain infection

January 24, 2017

The gut of a child infected with rotavirus is like a battle ground. On one side, the virus invades the epithelial cells that form the lining of the small intestine. The virus replicates driving havoc in the intestinal environment, which causes severe diarrhea, vomiting, fever and abdominal pain. Dehydration usually follows and, unless the child is treated, death may be the end. On the other side of the battle, the body of the child fights back. Epithelial cells are the first responders to the viral attack and can produce antiviral compounds such as interferons (IFNs), in particular IFNs type I and III. What tips the balance in favor of the virus or the body's defenses has been hard to determine. Understanding how to give the body an upper hand would help save the lives of hundreds of thousands of children under 5 years of age, each year around the world.

"This and other human viruses of the digestive system have been difficult to study because they do not grow well in experimental animals or in cell cultures in the laboratory," said Dr. Mary Estes, Cullen Endowed Professor of human and molecular virology and microbiology at Baylor and emeritus founding director of the Texas Medical Center Digestive Diseases Center. "This has changed since the development of the human intestinal enteroids (HIEs), a laboratory model of the human gut that recapitulates many of the biological and physiological properties of the human small intestine."

Using a laboratory model of the human gut, Estes and colleagues have revealed a strategy human rotavirus uses to evade the attempts of the human body to eradicate it. They found that although the virus does not succeed at preventing initial steps of the defense response, it is able to minimize subsequent steps that could stop its growth. Using a model of the live human gut, the scientists also showed cellular strategies to counter the viral response.

Studying anti-viral defenses in a living model of the human gut

"In this study we used the HIE model of the gut, which included epithelial cells, to study what happens when these cells encounter the virus and how the virus responds to IFNs," said Estes.

The researchers developed HIEs from a number of patients to compare the responses of different individuals. Their results show that each culture from an individual patient exhibits diversity in basal gene expression, yet after viral infection, all the cultures responded in a very similar manner.

When the researchers added human rotavirus to the HIE cultures in the laboratory, the epithelial cells activated type III IFN genes, which in turn activated other genes involved in the anti-viral response. However, this activation did not reduce viral reproduction. Unexpectedly, almost no type I IFN was activated.

The scientists then looked at whether activation of IFN genes had produced the desired IFN proteins, which are the molecules that ultimately carry out the job of inhibiting the virus. They found that when they added live rotavirus to the cultures, type III IFN genes were active but did not go through the process of efficiently translating their instructions into IFN proteins. On the other hand, when the scientists added inactivated rotavirus, which can enter the cells but not replicate, the epithelial cells responded by both activating the type III IFN genes and producing IFN proteins.

"These experiments showed us that in the HIE cultures, the active rotavirus is able to suppress the production of most of the IFN proteins aimed at controlling virus reproduction," Estes said. "Adding type I IFN to the HIE cultures with live rotavirus reduced viral replication more efficiently than adding type III IFN. This suggests that type I IFN may be more critical to limiting the growth of the virus and this IFN may be made from a source different from epithelial cells." The HIE model system of the human gut is a valuable tool to assess how people respond to viruses and other microorganisms that cause intestinal diseases and how those microorganisms counter bodily defenses. This is the first step toward designing treatments to prevent or control these deadly diseases.

The results appear in the Proceedings of the National Academy of Sciences.
-end-
Other contributors to this work include Kapil Saxena, Lukas M. Simon, Xi-Lei Zeng, Sarah E. Blutt, Sue E. Crawford, Narayan P. Sastri, Umesh C. Karandikar, Nadim J. Ajami, Nicholas C. Zachos, Olga Kovbasnjuk, Mark Donowitz, Margaret E. Conner and Chad A. Shaw. The authors are affiliated with one or both of the following institutions: Baylor College of Medicine and Johns Hopkins University School of Medicine.

This work was supported by National Institutes of Health Grants U19-AI116497, R01 AI080656, U18-TR000552 and R21-AI117220, and Howard Hughes Medical Institute Grant 570076890. This project also was supported by Advanced Technology Core Laboratories at Baylor College of Medicine, including core support from the Integrated Microscopy Core at Baylor College of Medicine with funding from Grants P30 DK-56338, P30 CA125123, CPRIT RP150578, the Dan L. Duncan Comprehensive Cancer Center and the John S. Dunn Gulf Coast Consortium for Chemical Genomics; the Cytometry and Cell Sorting Core at Baylor College of Medicine with funding from the Grants P30 AI036211, P30 CA125123, and S10 RR024574; and the Genomic and RNA Profiling Core at Baylor College of Medicine with funding from the Grants P30 DK56338 and P30 CA125123.

Baylor College of Medicine

Related Virus Articles:

Tracking the HI virus
A European research team led by Prof. Christian Eggeling from the Friedrich Schiller University Jena, the Leibniz Institute of Photonic Technology (Leibniz IPHT), and the University of Oxford has now succeeded in using high-resolution imaging to make visible to the millisecond how the HI virus spreads between living cells and which molecules it requires for this purpose.
Prior Zika virus or dengue virus infection does not affect secondary infections in monkeys
Previous infection with either Zika virus or dengue virus has no apparent effect on the clinical course of subsequent infection with the other virus, according to a study published August 1 in the open-access journal PLOS Pathogens by David O'Connor of the University of Wisconsin-Madison, and colleagues.
Smartphone virus scanner is not what you think
The current leading method to assess the presence of viruses and other biological markers of disease is effective but large and expensive.
Early dengue virus infection could "defuse" zika virus
The Zika virus outbreak in Latin America has affected over 60 million people up to now.
Catch a virus by its tail
At a glance: Research uncovers key mechanism that allows some of the deadliest human RNA viruses to orchestrate the precise copying of the individual pieces of their viral genome and replicate.
Developing a vaccine against Nipah virus
Researchers developed a novel recombinant vaccine called NIPRAB that shows robust immunization against Nipah virus in animal models and may be effective against other viruses in the same family.
Dengue virus infection may cause severe outcomes following Zika virus infection during pregnancy
This study is the first to report a possible mechanism for the enhancement of Zika virus progression during pregnancy in an animal model.
Engineering a cancer-fighting virus
An engineered virus kills cancer cells more effectively than another virus currently used in treatments, according to Hokkaido University researchers.
Madariaga virus spreads to Haiti
Madariaga virus (MADV), or South American eastern equine encephalitis virus (EEEV), has -- until now -- been found primarily in animals of South and Central America, with the first human outbreak occurring in Panama in 2010.
The virus detectives
Every summer in Southern Germany, Austria and Switzerland, tons of brown trout perish.
More Virus News and Virus Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.