Nav: Home

Human rotavirus manipulates immune response to maintain infection

January 24, 2017

The gut of a child infected with rotavirus is like a battle ground. On one side, the virus invades the epithelial cells that form the lining of the small intestine. The virus replicates driving havoc in the intestinal environment, which causes severe diarrhea, vomiting, fever and abdominal pain. Dehydration usually follows and, unless the child is treated, death may be the end. On the other side of the battle, the body of the child fights back. Epithelial cells are the first responders to the viral attack and can produce antiviral compounds such as interferons (IFNs), in particular IFNs type I and III. What tips the balance in favor of the virus or the body's defenses has been hard to determine. Understanding how to give the body an upper hand would help save the lives of hundreds of thousands of children under 5 years of age, each year around the world.

"This and other human viruses of the digestive system have been difficult to study because they do not grow well in experimental animals or in cell cultures in the laboratory," said Dr. Mary Estes, Cullen Endowed Professor of human and molecular virology and microbiology at Baylor and emeritus founding director of the Texas Medical Center Digestive Diseases Center. "This has changed since the development of the human intestinal enteroids (HIEs), a laboratory model of the human gut that recapitulates many of the biological and physiological properties of the human small intestine."

Using a laboratory model of the human gut, Estes and colleagues have revealed a strategy human rotavirus uses to evade the attempts of the human body to eradicate it. They found that although the virus does not succeed at preventing initial steps of the defense response, it is able to minimize subsequent steps that could stop its growth. Using a model of the live human gut, the scientists also showed cellular strategies to counter the viral response.

Studying anti-viral defenses in a living model of the human gut

"In this study we used the HIE model of the gut, which included epithelial cells, to study what happens when these cells encounter the virus and how the virus responds to IFNs," said Estes.

The researchers developed HIEs from a number of patients to compare the responses of different individuals. Their results show that each culture from an individual patient exhibits diversity in basal gene expression, yet after viral infection, all the cultures responded in a very similar manner.

When the researchers added human rotavirus to the HIE cultures in the laboratory, the epithelial cells activated type III IFN genes, which in turn activated other genes involved in the anti-viral response. However, this activation did not reduce viral reproduction. Unexpectedly, almost no type I IFN was activated.

The scientists then looked at whether activation of IFN genes had produced the desired IFN proteins, which are the molecules that ultimately carry out the job of inhibiting the virus. They found that when they added live rotavirus to the cultures, type III IFN genes were active but did not go through the process of efficiently translating their instructions into IFN proteins. On the other hand, when the scientists added inactivated rotavirus, which can enter the cells but not replicate, the epithelial cells responded by both activating the type III IFN genes and producing IFN proteins.

"These experiments showed us that in the HIE cultures, the active rotavirus is able to suppress the production of most of the IFN proteins aimed at controlling virus reproduction," Estes said. "Adding type I IFN to the HIE cultures with live rotavirus reduced viral replication more efficiently than adding type III IFN. This suggests that type I IFN may be more critical to limiting the growth of the virus and this IFN may be made from a source different from epithelial cells." The HIE model system of the human gut is a valuable tool to assess how people respond to viruses and other microorganisms that cause intestinal diseases and how those microorganisms counter bodily defenses. This is the first step toward designing treatments to prevent or control these deadly diseases.

The results appear in the Proceedings of the National Academy of Sciences.
-end-
Other contributors to this work include Kapil Saxena, Lukas M. Simon, Xi-Lei Zeng, Sarah E. Blutt, Sue E. Crawford, Narayan P. Sastri, Umesh C. Karandikar, Nadim J. Ajami, Nicholas C. Zachos, Olga Kovbasnjuk, Mark Donowitz, Margaret E. Conner and Chad A. Shaw. The authors are affiliated with one or both of the following institutions: Baylor College of Medicine and Johns Hopkins University School of Medicine.

This work was supported by National Institutes of Health Grants U19-AI116497, R01 AI080656, U18-TR000552 and R21-AI117220, and Howard Hughes Medical Institute Grant 570076890. This project also was supported by Advanced Technology Core Laboratories at Baylor College of Medicine, including core support from the Integrated Microscopy Core at Baylor College of Medicine with funding from Grants P30 DK-56338, P30 CA125123, CPRIT RP150578, the Dan L. Duncan Comprehensive Cancer Center and the John S. Dunn Gulf Coast Consortium for Chemical Genomics; the Cytometry and Cell Sorting Core at Baylor College of Medicine with funding from the Grants P30 AI036211, P30 CA125123, and S10 RR024574; and the Genomic and RNA Profiling Core at Baylor College of Medicine with funding from the Grants P30 DK56338 and P30 CA125123.

Baylor College of Medicine

Related Virus Articles:

A new biosensor for the COVID-19 virus
A team of researchers from Empa, ETH Zurich and Zurich University Hospital has succeeded in developing a novel sensor for detecting the new coronavirus.
How at risk are you of getting a virus on an airplane?
New 'CALM' model on passenger movement developed using Frontera supercomputer.
Virus multiplication in 3D
Vaccinia viruses serve as a vaccine against human smallpox and as the basis of new cancer therapies.
How the Zika virus can spread
The spread of infectious diseases such as Zika depends on many different factors.
Fighting the herpes virus
New insights into preventing herpes infections have been published in Nature Communications.
Strategies of a honey bee virus
Heidelberg, 23 October 2019 - The Israeli Acute Paralysis Virus is a pathogen that affects honey bees and has been linked to Colony Collapse Disorder, a key factor in decimating the bee population.
Tracking the HI virus
A European research team led by Prof. Christian Eggeling from the Friedrich Schiller University Jena, the Leibniz Institute of Photonic Technology (Leibniz IPHT), and the University of Oxford has now succeeded in using high-resolution imaging to make visible to the millisecond how the HI virus spreads between living cells and which molecules it requires for this purpose.
Prior Zika virus or dengue virus infection does not affect secondary infections in monkeys
Previous infection with either Zika virus or dengue virus has no apparent effect on the clinical course of subsequent infection with the other virus, according to a study published August 1 in the open-access journal PLOS Pathogens by David O'Connor of the University of Wisconsin-Madison, and colleagues.
Smartphone virus scanner is not what you think
The current leading method to assess the presence of viruses and other biological markers of disease is effective but large and expensive.
Early dengue virus infection could "defuse" zika virus
The Zika virus outbreak in Latin America has affected over 60 million people up to now.
More Virus News and Virus Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.