Nav: Home

Ubiquitous but overlooked, fluid is a source of muscle tension

January 24, 2017

Touch your toes. Feel that familiar tension in your leg muscles? A new Brown University study suggests that one source of the tension might be something that scientists have always known was in your muscle fibers, but never accounted for: fluid.

In every animal, including humans, each muscle fiber is both filled with incompressible fluid and sheathed in a winding mesh of collagen connective tissue. When a muscle stretches in length, the surrounding mesh lengthens and becomes narrower in diameter.

What follows is like what happens in one of those woven "finger trap" toys, reports doctoral student David Sleboda, lead author of the study published in Biology Letters. Just like the toy squeezes your sheathed fingers when you stretch it far enough, the collagen mesh eventually squeezes down on the muscle fiber. Because the fiber is full of incompressible fluid, Sleboda discovered, it's volume pushes back against the narrowing mesh, creating a tension that makes further stretch much more difficult.

"The fundamental problem here is a conflict of volumes," Sleboda said. "The mesh sleeve can change volume but the fiber is a constant volume. Eventually the two are going to run into each other and that's where you see the tension really shoot up."

Other previously posited factors also contribute to the tension you feel when you stretch, Sleboda acknowledged. One is tension created by kinks in the collagen mesh itself and another is a stretchy protein in muscle fibers called titin. But the fluid-filled nature of muscle fibers appear to play a role, too.

A model and a muscle

Sleboda works in the lab of study co-author Thomas Roberts, a professor of ecology and evolutionary biology who studies muscle structure and performance. Sleboda was looking at electron microscope pictures of animal muscle fibers and their collagen sheaths, and decided to build a simple model himself (he also made his own microscope pictures, including one that recently earned a featured mention on the blog of NIH director Francis Collins).

Materials for Sleboda's model weren't hard to come by. The collagen mesh is well simulated by Techflex braided sheathing (typically used to neatly bundle computer cables together) and the muscle fiber could be made from a water-filled condom bought at the corner drug store.

Rather quickly the model revealed that the fluid played a significant role in the mechanical properties of the muscle - the resistance of the water-filled condom made the Techflex harder to stretch. Scientists have rarely modeled muscle mechanics to account for fluid in the fibers, Sleboda said. They had largely assumed that the fluid played only a chemical role within cells.

But did Sleboda's model really say anything meaningful about actual physiology? He conducted experiments to find out. In the study, Sleboda and Roberts report careful measurements of lengthwise stretch and the resulting tension in not only the model, but also in real bullfrog muscle as they varied the amounts of fluid in the muscle fibers (and the condoms).

The model and the real muscle both displayed the same characteristic curve in their plots: The more fluid volume in the muscle fibers, the more tension for a given length of stretch. The fluid makes a specific, measurable, mechanical difference.

"We could get the exact same behavior using just a simple model," Sleboda said. "Our study provides the first empirical evidence of fluid influencing muscle tension."

Sleboda said his findings argue for accounting for fluid in models of muscle mechanics. For example, after exercise muscle fibers appear to take on more fluid. Adding fluid's effects to models of muscle behavior could then improve understanding of how muscles behave after exercise.

There are also medical conditions that affect how the collagen mesh is structured or performs, Sleboda said. Knowing how it interacts with fluid-filled muscle fibers could also prove important in future research.

Studies in other areas of animal physiology provide a ready-made roadmap, in fact, because fiber-reinforced fluid cavities, called "hydrostatic skeletons" are common structural elements in some organisms, Sleboda said. It's not a stretch to think the lessons learned there, could now be applied to studying muscle.
-end-
The National Institutes of Health funded the study (grant number AR055295).

Brown University

Related Muscle Articles:

Link between gut microbes & muscle growth suggests future approach to tackle muscle loss
Scientists led by NTU Singapore's Professor Sven Pettersson established a link between gut microbes and muscle growth and function -- a finding that could open new doors to interventions for age-related skeletal muscle loss.
What is known -- and not known -- about heart muscle diseases in children
Cardiomyopathies (heart muscle diseases) in children are the focus of a new scientific statement from the American Heart Association that provides insight into the diagnosis and treatment of the diseases as well as identifying future research priorities.
Chloride-channel in muscle cells provides new insights for muscle diseases
Researchers from the University of Copenhagen have mapped the structure of an important channel in human muscle cells.
How do muscle and tendon connections last a lifetime?
Muscles are connected to tendons to power animal movements such as running, swimming or flying.
Oscillation in muscle tissue
When a muscle grows or a muscle injury heals, some of the stem cells develop into new muscle cells.
How diabetes causes muscle loss
Diabetes is associated with various health problems including decline in skeletal muscle mass.
Microscope measures muscle weakness
Biotechnologists at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have developed a system to accurately measure muscle weakness caused by structural changes in muscle tissue.
Muscle-building proteins hold clues to ALS, muscle degeneration
Amyloid-like protein assemblies, long believed to be toxic and fuel diseases like ALS, have been found to play a key role in healthy muscle regeneration.
Stabilizing dysferlin-deficient muscle cell membrane improves muscle function
In a head-to-head trial between the conventional glucocorticoid, prednisolone, and a modified glucocorticoid, vamorolone, in experimental models of LGMD2B, vamorolone improved dysferlin-deficient muscle cell membrane stability and repair.
Decellularized muscle grafts support skeletal muscle regeneration to treat tissue loss
A new comparative study showed the advantages of using donor decellularized muscle to promote functional tissue regeneration at the site of bulk skeletal muscle loss due to trauma or surgery.
More Muscle News and Muscle Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.