Nav: Home

Myth busted: No link between gigantic asteroid break-up and rise in biodiversity

January 24, 2017

Some 470 million years ago, during the middle part of the geological period known as the Ordovician, an asteroid collision took place somewhere between Mars and Jupiter. The collision caused an explosion that sent a cascade of meteorites towards Earth. The heavy bombardment of Earth continued for millions of years, and even today some 20% of all meteorites that reach Earth originate from this asteroid break-up. At the same time the Earth witnessed the greatest rise in marine biodiversity since the origin of multicellular life. So, the question is: was there a connection between these two fundamental events in Earth history, as has been proposed? A new study now demonstrates that the rise in biodiversity commenced long before the asteroid collision.

The link between these two fundamental events -- the so-called Ordovician radiation and the sustained meteorite bombardment -- has, for many years, presented a paradox in science. We are used to hearing the story of meteorite impacts that leads to the loss of species richness, such as when the dinosaurs went extinct 65 million years ago. But could the opposite scenario be a possibility as well? asks Assistant Professor Christian M. Ø. Rasmussen from the Natural History Museum of Denmark rhetorically. He is co-authoring the study in which an incidental finding of the rare mineral zircon within the meteorite-bearing rock layers led to an answer to the paradox.

Plus, minus 6 million years

Researchers have long known that the fossil meteorites are lying in rock layers that also witness the great increase in biodiversity, but could only date the asteroid break-up to occur within a time frame of 12 million years. This interval exactly overlaps the initiation of the great biodiversity increase. But, with the lucky finding of zircons in rock layers also containing fossil meteorites, the researchers suddenly had the opportunity to precisely determine when the asteroid collision took place, and thus, whether there was a link to the radiation event, or not.

-Zircons are special as they can be used to date rocks. They come from magma chambers in the crust but are extruded onto the Earth's surface through volcanic eruptions. Thus, if you find zircons in the rock record you can date these zircons and thus get an age for when this eruption took place. In this case, this date would also define a precise age for the fossil meteorites, explains Anders Lindskog from the Geological Department, Lund University, who is the lead-author on the study. He was the one who recovered the zircons when studying the rock layers containing the fossil meteorites and subsequently sent them to the Natural History Museum of Denmark, which has the facilities and experience to conduct high-precision dating of rocks.

Calculating the age of the zircons

In Copenhagen, the zircons were handed over to postdoc Mafalda Costa from Centre for Star and planet Formation (StarPlan) at the Natural History Museum of Denmark, who processed and analyzed the minerals in the radiogenic isotope laboratory at the Geological Museum.

Mafalda Costa explains:

Zircons occur in a wide variety of rocks, including in ash layers associated with volcanic eruptions. The determination of the age of these crystals is based on the natural radioactivity of uranium, which is incorporated in the mineral upon crystallization, and that from that moment until today, at a known rate, has been spontaneously decaying to lead. We measure the amount of uranium and lead present in the zircons and from that it is possible to calculate an age that pinpoints the time when they erupted on the surface. In this case, on the same surface that also contained meteorites originating from the asteroid break-up. In this way, we could precisely define the age of the fossil meteorites, explains Mafalda Costa, and adds:

From other isotope analyses of minerals found in the fossil meteorites it had been previously estimated how much time the meteorites spent in space before reaching Earth. Hitherto it was not precisely known when this happened. With our new zircon age, we can determine that the rise in biodiversity occurred ~2.5 million years prior to the asteroid break-up took place.

This new study, which has just been published in the renowned journal Nature Communications, therefore demonstrates that there is no link between the Ordovician rise in biodiversity and the asteroid break-up -- thus, some other driver must have facilitated the Ordovician radiation.
-end-
Contact

Christian Mac Ørum Rasmussen
Adjunkt vStatens Naturhistoriske Museum
Københavns Universitet
Mail: christian@snm.ku.dk
Mobil: 21-74-16-70

Maria Mafalda Canas Portela Costa
Postdoc
Center for Stjerne- og Planetdannelse
Statens Naturhistoriske Museum
Københavns Universitet
Mail: mafalda.costa@snm.ku.dk
Mobil: 52-71-66-98

Anders Lindskog
Lunds Universitet
Department of Geology
Mail: anders.lindskog@geol.lu.se
Telefon: +46-46-222-08-89

Faculty of Science - University of Copenhagen

Related Biodiversity Articles:

Biodiversity is 3-D
The species-area relationship (SAC) is a long-time considered pattern in ecology and is discussed in most of academic Ecology books.
Thought Antarctica's biodiversity was doing well? Think again
Antarctica and the Southern Ocean are not in better environmental shape than the rest of the world.
Antarctica's biodiversity is under threat
A unique international study has debunked the popular view that Antarctica and the Southern Ocean are in much better ecological shape than the rest of the world.
Poor outlook for biodiversity in Antarctica
The popular view that Antarctica and the Southern Ocean are in a much better environmental shape than the rest of the world has been brought into question in a study publishing on March 28 in the open access journal PLOS Biology, by an international team lead by Steven L.
Temperature drives biodiversity
Why is the diversity of animals and plants so unevenly distributed on our planet?
Biodiversity needs citizen scientists
Could birdwatching or monitoring tree blossoms in your community make a difference in global environmental research?
Biodiversity loss in forests will be pricey
A new global assessment of forests -- perhaps the largest terrestrial repositories of biodiversity -- suggests that, on average, a 10 percent loss in biodiversity leads to a 2 to 3 percent loss in the productivity, including biomass, that forests can offer.
Biodiversity falls below 'safe levels' globally
Levels of global biodiversity loss may negatively impact on ecosystem function and the sustainability of human societies, according to UCL-led research.
Unravelling the costs of rubber agriculture on biodiversity
A striking decline in ant biodiversity found on land converted to a rubber plantation in China.
Nitrogen is a neglected threat to biodiversity
Nitrogen pollution is a recognized threat to sensitive species and ecosystems.

Related Biodiversity Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Anthropomorphic
Do animals grieve? Do they have language or consciousness? For a long time, scientists resisted the urge to look for human qualities in animals. This hour, TED speakers explore how that is changing. Guests include biological anthropologist Barbara King, dolphin researcher Denise Herzing, primatologist Frans de Waal, and ecologist Carl Safina.
Now Playing: Science for the People

#532 A Class Conversation
This week we take a look at the sociology of class. What factors create and impact class? How do we try and study it? How does class play out differently in different countries like the US and the UK? How does it impact the political system? We talk with Daniel Laurison, Assistant Professor of Sociology at Swarthmore College and coauthor of the book "The Class Ceiling: Why it Pays to be Privileged", about class and its impacts on people and our systems.