Nav: Home

IU study finds fly growth mimics cancer cells, creating new tool in fight against disease

January 24, 2017

BLOOMINGTON, Ind. -- Scientists who study a molecule known to play a role in certain types of cancers and neurodegenerative disorders have a powerful new tool to study this compound due to research conducted at Indiana University.

The study, published Jan. 23 in the Proceedings of the National Academy of Sciences, shows how the extreme growth experienced by fruit flies in their earliest stage of life shares biochemical similarities with the growth of cancer cells.

"We found that the same molecule implicated in human cancers is also produced by fruit flies during their larval stage," said senior author Jason M. Tennessen, an assistant professor in the IU Bloomington College of Arts and Sciences' Department of Biology. "The discovery is significant because it provides the first animal model to understand how these molecules function in healthy cells.

"If we can determine the function of this molecule in normal cells, we can better understand how it causes human disease."

Specifically, the study is the first to find that fruit flies produce L-2-hydroxyglutarate, or L-2HG, a molecule commonly regarded as an "oncometabolite," which can promote tumor formation and growth.

L-2HG has been found in tumor cells from patients with brain and kidney cancers, as well as the rare neurological disorder L-2-hydroxyglutaric aciduria, whose symptoms include muscle weakness, seizures and damage to the parts of the brain that control muscle movement, speech, vision, emotion and memory. Another form of the molecule -- a "mirror image" version called D-2HG -- has also been found in brain tumors and leukemia.

The IU study is also the first to show how the molecule functions in a living system where cancer is not present.

"How the function of L-2GH differs between healthy and diseased tissues is poorly understood," Tennessen said. "In addition to establishing a new model for studying this cancer-related molecule, our study demonstrates that a compound previously regarded as a metabolic waste product actually functions in healthy animals."

The discovery of L-2HG in fruit flies was a surprise, Tennessen added. His lab had been working to create fruit flies that lacked lactate dehydrogenase, an enzyme commonly thought to fuel growth in many tumors, and therefore a potential target for cancer drug development.

After analyzing normal and mutant flies with metabolomics -- a technology that simultaneously catalogs hundreds of small molecules in the insect's body -- Tennessen's team was surprised to find the mutant flies stopped producing not only lactate but also L-2HG, which showed the enzyme was responsible for producing this molecule as well.

The IU researchers then examined the unmodified flies to understand the role of L-2HG in these insects. Their analysis found the flies normally produce the molecule at high levels in the larval stage -- a period of extreme growth during which the body grows over 200 times in size over several days. They also identified a new mechanism that allowed the flies to control their accumulation of the molecule.

The mechanism is significant since the high L-2HG levels that flies produce in early life is precisely controlled -- a stark contrast to the production of this molecule in cancer and diseased cells.

"What we need to do next is conduct further research to really nail down how exactly this molecule functions in a healthy animal," Tennessen said. "What happens if there's too much of it, or too little? Does it accelerate growth, or slow it down? Exactly what genes does it control? There's a lot of important questions we can answer using the power of fly genetics."
The first author on the study is Hongde Li, a postdoctoral researcher in the IU Bloomington Department of Biology. Other IU Bloomington researchers on the study were associate scientist Geetanjali Chawla and research associates Alexander J. Hurlburt and Maria C. Sterrett in the Department of Biology and Jonathan A. Karty, associate scientist manager of the Mass Spectrometry Facility in the Department of Chemistry. Additional contributors were Adam P. Rosebrock, Amy A. Caudy and Olga Zaslaver of the University of Toronto and James Cox of the University of Utah.

This research was supported in part by the National Institute of General Medical Sciences of the National Institutes of Health, the Canadian Institutes of Health Research and the Natural Sciences and Engineering Research Council of Canada.

Indiana University

Related Cancer Articles:

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.
Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.
Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.
More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.
New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.
American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.
Oncotarget: Cancer pioneer employs physics to approach cancer in last research article
In the cover article of Tuesday's issue of Oncotarget, James Frost, MD, PhD, Kenneth Pienta, MD, and the late Donald Coffey, Ph.D., use a theory of physical and biophysical symmetry to derive a new conceptualization of cancer.
Health indicators for newborns of breast cancer survivors may vary by cancer type
In a study published in the International Journal of Cancer, researchers from the UNC Lineberger Comprehensive Cancer Center analyzed health indicators for children born to young breast cancer survivors in North Carolina.
Few women with history of breast cancer and ovarian cancer take a recommended genetic test
More than 80 percent of women living with a history of breast or ovarian cancer at high-risk of having a gene mutation have never taken the test that can detect it.
Radiotherapy for invasive breast cancer increases the risk of second primary lung cancer
East Asian female breast cancer patients receiving radiotherapy have a higher risk of developing second primary lung cancer.
More Cancer News and Cancer Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.