Nav: Home

Scientists discover a way to sequence DNA of rare animals

January 24, 2017

Rare and extinct animals are preserved in jars of alcohol in natural history museum collections around the world, which provide a wealth of information on the changing biodiversity of the planet. These preserved specimens of snakes, lizards, frogs, fish and other animals can last up to 500 years when processed in a chemical called formalin. While formalin helps preserve the specimen making it rigid and durable, it poses a challenge to extracting and sequencing DNA. Furthermore, DNA degrades and splits into small fragments over time. This fragmented DNA is difficult to amplify into long informative stretches of DNA that can be used to examine evolutionary relationships among species when using older DNA sequencing technology. Therefore, scientists have not been able to effectively sequence DNA from these specimens until now.

LSU Museum of Natural Science Curator and Professor Christopher Austin and his collaborator Rutgers-Newark Assistant Professor Sara Ruane developed a protocol and tested a method for DNA sequencing thousands of genes from these intractable snake specimens. Their research was published today in the international scientific journal Molecular Ecology Resources.

"Natural history museums are repositories for extinct species. Unfortunately, naturalists in the 1800s were not collecting specimens for analyses we conduct today such as DNA sequencing. Now with these new methods, we can get the DNA from these very old specimens and sequence extinct species like the Ivory Billed Woodpecker, the Tasmanian Wolf and the Dodo Bird," Austin said.

He and Ruane found and tested an approach that includes taking a small piece of liver tissue from the snake specimen, heating it up over a longer period of time and applying an enzyme that digests the tissue sample and enables the DNA to be extracted. Their minimally invasive protocol preserves the specimen so additional information can be collected from the specimen in the future. It also includes applying the latest technology to chemically sequence the specimens' DNA.

"A genome is a complex jigsaw puzzle broken up in to hundreds of millions of small pieces. We can sequence those pieces and computationally put them back together," Austin said.

They extracted and sequenced the DNA of 13 historic or rare snake specimens from all over the world many of which had never been analyzed using modern genetic methods. Some of the specimens were more than 100 years old. They also integrated these data with modern samples to create a genetic family tree, or phylogeny, that maps the evolutionary relationships of various snake species. This work resulted in thousands of genetic markers for snake specimens collected as far back as the early 1900s.

"The exciting thing about this work is that it makes species that have been essentially lost to science, due to extirpation, rarity or general secretiveness, which applies to many animals and not just snakes, available for scientific research in the modern age of genomics," Ruane said.

"We also believe this research will benefit scientists working with rare animals that are either hard to collect or extinct but are represented in fluid-preserved historical collections. It also underscores the continued importance of museum collections in modern science," Austin said.
-end-


Louisiana State University

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Making Amends
What makes a true apology? What does it mean to make amends for past mistakes? This hour, TED speakers explore how repairing the wrongs of the past is the first step toward healing for the future. Guests include historian and preservationist Brent Leggs, law professor Martha Minow, librarian Dawn Wacek, and playwright V (formerly Eve Ensler).
Now Playing: Science for the People

#566 Is Your Gut Leaking?
This week we're busting the human gut wide open with Dr. Alessio Fasano from the Center for Celiac Research and Treatment at Massachusetts General Hospital. Join host Anika Hazra for our discussion separating fact from fiction on the controversial topic of leaky gut syndrome. We cover everything from what causes a leaky gut to interpreting the results of a gut microbiome test! Related links: Center for Celiac Research and Treatment website and their YouTube channel
Now Playing: Radiolab

The Flag and the Fury
How do you actually make change in the world? For 126 years, Mississippi has had the Confederate battle flag on their state flag, and they were the last state in the nation where that emblem remained "officially" flying.  A few days ago, that flag came down. A few days before that, it coming down would have seemed impossible. We dive into the story behind this de-flagging: a journey involving a clash of histories, designs, families, and even cheerleading. This show is a collaboration with OSM Audio. Kiese Laymon's memoir Heavy is here. And the Hospitality Flag webpage is here.