Nav: Home

Scientists discover a way to sequence DNA of rare animals

January 24, 2017

Rare and extinct animals are preserved in jars of alcohol in natural history museum collections around the world, which provide a wealth of information on the changing biodiversity of the planet. These preserved specimens of snakes, lizards, frogs, fish and other animals can last up to 500 years when processed in a chemical called formalin. While formalin helps preserve the specimen making it rigid and durable, it poses a challenge to extracting and sequencing DNA. Furthermore, DNA degrades and splits into small fragments over time. This fragmented DNA is difficult to amplify into long informative stretches of DNA that can be used to examine evolutionary relationships among species when using older DNA sequencing technology. Therefore, scientists have not been able to effectively sequence DNA from these specimens until now.

LSU Museum of Natural Science Curator and Professor Christopher Austin and his collaborator Rutgers-Newark Assistant Professor Sara Ruane developed a protocol and tested a method for DNA sequencing thousands of genes from these intractable snake specimens. Their research was published today in the international scientific journal Molecular Ecology Resources.

"Natural history museums are repositories for extinct species. Unfortunately, naturalists in the 1800s were not collecting specimens for analyses we conduct today such as DNA sequencing. Now with these new methods, we can get the DNA from these very old specimens and sequence extinct species like the Ivory Billed Woodpecker, the Tasmanian Wolf and the Dodo Bird," Austin said.

He and Ruane found and tested an approach that includes taking a small piece of liver tissue from the snake specimen, heating it up over a longer period of time and applying an enzyme that digests the tissue sample and enables the DNA to be extracted. Their minimally invasive protocol preserves the specimen so additional information can be collected from the specimen in the future. It also includes applying the latest technology to chemically sequence the specimens' DNA.

"A genome is a complex jigsaw puzzle broken up in to hundreds of millions of small pieces. We can sequence those pieces and computationally put them back together," Austin said.

They extracted and sequenced the DNA of 13 historic or rare snake specimens from all over the world many of which had never been analyzed using modern genetic methods. Some of the specimens were more than 100 years old. They also integrated these data with modern samples to create a genetic family tree, or phylogeny, that maps the evolutionary relationships of various snake species. This work resulted in thousands of genetic markers for snake specimens collected as far back as the early 1900s.

"The exciting thing about this work is that it makes species that have been essentially lost to science, due to extirpation, rarity or general secretiveness, which applies to many animals and not just snakes, available for scientific research in the modern age of genomics," Ruane said.

"We also believe this research will benefit scientists working with rare animals that are either hard to collect or extinct but are represented in fluid-preserved historical collections. It also underscores the continued importance of museum collections in modern science," Austin said.
-end-


Louisiana State University

Related Dna Articles:

Penn State DNA ladders: Inexpensive molecular rulers for DNA research
New license-free tools will allow researchers to estimate the size of DNA fragments for a fraction of the cost of currently available methods.
It is easier for a DNA knot...
How can long DNA filaments, which have convoluted and highly knotted structure, manage to pass through the tiny pores of biological systems?
How do metals interact with DNA?
Since a couple of decades, metal-containing drugs have been successfully used to fight against certain types of cancer.
Electrons use DNA like a wire for signaling DNA replication
A Caltech-led study has shown that the electrical wire-like behavior of DNA is involved in the molecule's replication.
Switched-on DNA
DNA, the stuff of life, may very well also pack quite the jolt for engineers trying to advance the development of tiny, low-cost electronic devices.
More Dna News and Dna Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...