Nav: Home

New sensors can detect single protein molecules

January 24, 2017

CAMBRIDGE, MA -- For the first time, MIT engineers have designed sensors that can detect single protein molecules as they are secreted by cells or even a single cell.

These sensors, which consist of chemically modified carbon nanotubes, could help scientists with any application that requires detecting very small amounts of protein, such as tracking viral infection, monitoring cells' manufacturing of useful proteins, or revealing food contamination, the researchers say.

"We hope to use sensor arrays like this to look for the 'needle in a haystack,'" says Michael Strano, the Carbon P. Dubbs Professor of Chemical Engineering at MIT. "These arrays represent the most sensitive molecular sensing platforms that we have available to us technologically. You can functionalize them so you can see the stochastic fluctuations of single molecules binding to them."

Strano is the senior author of a Jan. 23 Nature Nanotechnology paper describing the new sensors. The paper's lead author is Markita Landry, a former MIT postdoc who is now an assistant professor at the University of California at Berkeley.

Other MIT authors are research scientist Hiroki Ando, former graduate student Allen Chen, postdocs Jicong Cao and Juyao Dong, and associate professor of electrical engineering and computer science Timothy Lu. Vishal Kottadiel of Harvard University and Linda Chio and Darwin Yang of the University of California at Berkeley are also authors.

No detection limit

Strano's lab has previously developed sensors that can detect many types of molecules, all based on modifications of carbon nanotubes -- hollow, nanometer-thick cylinders made of carbon that naturally fluoresce when exposed to laser light. To turn the nanotubes into sensors, Strano's lab coats them with DNA, proteins, or other molecules that can bind to a specific target. When the target is bound, the nanotubes' fluorescence changes in a measurable way.

In this case, the researchers used chains of DNA called aptamers to coat the carbon nanotubes. Previous efforts to use DNA aptamers have been stymied because of the difficulty of getting the aptamer to stick to the nanotube while maintaining the configuration it needs to bind to its target.

Landry overcame this challenge by adding a "spacer" sequence between the section of the aptamer that attaches to the nanotube and the section that binds to the target, allowing each region the freedom to perform its own function. The researchers successfully demonstrated sensors for a signaling protein called RAP1 and a viral protein called HIV1 integrase, and they believe the approach should work for many other proteins.

To monitor protein production of single cells, the researchers set up an array of the sensors on a microscope slide. When a single bacterial, human, or yeast cell is placed on the array, the sensors can detect whenever the cell secretes a molecule of the target protein.

"Nanosensor arrays like this have no detection limit," Strano says. "They can see down to single molecules."

However, there is a tradeoff -- the fewer molecules there are, the longer it takes to sense them. As the molecule becomes more scarce, detection can take an infinite amount of time, Strano says.

Useful tools

The sensor arrays could be useful for many different applications, the researchers say.

"This platform will open a new path to detect trace amounts of proteins secreted by microorganisms," Dong says. "It will advance biological research [on] the generation of signal molecules, as well as the biopharmaceutical industry's [efforts to monitor] microorganism health and product quality."

In the pharmaceutical realm, these sensors could be used to test cells engineered to help treat disease. Many researchers are now working on an approach where doctors would remove a patient's own cells, engineer them to express a therapeutic protein, and place them back in the patient.

"We think these nanosensor arrays are going to be useful tools for measuring these precious cells and making sure that they're performing the way that you want them to," Strano says.

He says researchers could also use the arrays to study viral infection, neurotransmitter function, and a phenomenon called quorum sensing, which allows bacteria to communicate with each other to coordinate their gene expression.

Massachusetts Institute of Technology

Related Carbon Nanotubes Articles:

Carbon nanotubes self-assemble into tiny transistors
Carbon nanotubes can be used to make very small electronic devices, but they are difficult to handle.
Reusable carbon nanotubes could be the water filter of the future, says RIT study
Enhanced single-walled carbon nanotubes offer a more effective and sustainable approach to water treatment and remediation than the standard industry materials -- silicon gels and activated carbon -- according to a paper by RIT researchers John-David Rocha and Reginald Rogers.
How to roll a nanotube: Demystifying carbon nanotubes' structure control
A key advancement in the design of high performance carbon-based electronics.
Carbon nanotubes improve metal's longevity under radiation
Carbon nanotubes may improve longevity in nuclear reactors.
New process enables easier isolation of carbon nanotubes
Using this new method, long carbon nanotubes with high structural integrity, and without contaminants, can be obtained.
New device uses carbon nanotubes to snag molecules
Engineers at MIT have devised a new technique for trapping hard-to-detect molecules, using forests of carbon nanotubes.
Future electronics based on carbon nanotubes
A big barrier to building useful electronics with carbon nanotubes has always been the fact that when they're arrayed into films, a certain portion of them will act more like metals than semiconductors.
Can engineered carbon nanotubes help to avert our water crisis?
Carbon nanotube membranes have a bright future in addressing the world's growing need to purify water from the sea, researchers say in a study published in the journal Desalination.
Future flexible electronics based on carbon nanotubes
Researchers have demonstrated a new method to improve the reliability and performance of transistors and circuits based on carbon nanotubes, a semiconductor material that has long been considered by scientists as one of the most promising successors to silicon for smaller, faster and cheaper electronic devices.
Synthesis of structurally pure carbon nanotubes using molecular seeds
For the first time, researchers at Empa and the Max Planck Institute for Solid State Research have succeeded in 'growing' single-wall carbon nanotubes with a single predefined structure -- and hence with identical electronic properties.

Related Carbon Nanotubes Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...