Nav: Home

Supercool electrons

January 24, 2017

The future of quantum computing is a hot topic not only for experts but also in many commercial and governmental agencies. Rather than processing and storing information as bits in transistors or memories, which limit information to the binary '1' or '0', quantum computers would instead use quantum systems, such as atoms, ions, or electrons, as 'qubits' to process and store "quantum information" in, which can be in an infinite number of combinations of '1 and 0'. Large technology corporations, such as Google, Microsoft, Intel, and IBM are investing heavily in related projects that may lead to realize the quantum computer and technologies. At the same time, universities and research institutes around the world are researching novel quantum systems, adoptable for quantum computing. The Quantum Dynamics Unit at the Okinawa Institute of Science and Technology Graduate University (OIST), has recently made novel findings about electrons floating on the surface of liquid helium, a quantum system which may be a new candidate for quantum computing into reality. These results were published in Physical Review B.

One of the common problems in quantum computing research using solids is that it is very difficult to make perfectly identical qubits because intrinsic defects or impurities in the materials used randomly affect each individual qubit performance. "Our motivation for pursuing a liquid helium system is that it is intrinsically pure and free of defects, which theoretically allows for the creation of perfectly identical qubits. Additionally, we can move electrons in this liquid helium system, which is difficult or nearly impossible in other quantum systems," explained Prof. Denis Konstantinov, head of the Quantum Dynamics Unit. Therefore, it is believed that adopting this system for quantum computing might bring the whole field to the next level.

Utilizing electrons on a liquid helium surface for quantum computing requires isolating individual electrons on a helium surface and controlling their quantum degrees of freedom, either motional or spin. It may also require the movement of electrons to different locations, thus it is also important to understand the physics of the interaction between electrons and the helium surface. It was previously discovered that electrons on helium can form a two-dimensional crystal, and some unique phenomena occur when this crystal moves along the helium surface, due to the interaction between electrons and surface waves. The OIST scientists, however, are the first to probe how these phenomena depend on the size of the electron crystal. To test this, Dr. Alexander Badrutdinov, Dr. Oleksandr Smorodin and OIST PhD student Jui-Yin Lin, built a microscopic channel device that contained an electron trap within to isolate a crystal of a relatively small number of electrons. This crystal would then be moved across the liquid helium surface by altering electrostatic potential of one of the device electrodes. This motion would be detected by measuring image charges, which are induced by the moving electrons, flowing through another electrode using a commercially available current amplifier and lock-in detector. "This research gave us some insights into the physics of the interaction between electrons and the helium surface, as well as expanded our micro-engineering capabilities" states Dr. Alexander Badrutdinov, a former member of the Quantum Dynamics Unit and the first author of the paper. "We successfully adopted a technology to confine electrons into microscopic devices, on the scale of few microns. With this technology we studied the motion of microscopic two-dimensional electron crystals along a liquid helium surface and saw no difference between the movement of large electron crystals, on the scale of millions to billions of electrons, and crystals as small as a few thousands of electrons, when theoretically, differences should exist".

This research is the first step at OIST in the prospect of using this system for quantum computing. According to Konstantinov, "the next step in this research is to isolate an even smaller electron crystal, and ultimately, a single electron, and to move them in this system. Unlike other systems, this system has the potential to be a pure, scalable system with mobile qubits." In theory, this type of system would have the potential to revolutionize the quantum computing research field.

Okinawa Institute of Science and Technology (OIST) Graduate University

Related Quantum Computing Articles:

Diversity may be key to reducing errors in quantum computing
In quantum computing, as in team building, a little diversity can help get the job done better, computer scientists have discovered.
'Valley states' in this 2D material could potentially be used for quantum computing
New research on 2-dimensional tungsten disulfide (WS2) could open the door to advances in quantum computing.
Sound of the future: A new analog to quantum computing
In a paper published in Nature Research's journal, Communications Physics, researchers in the University of Arizona Department of Materials Science and Engineering have demonstrated the possibility for acoustic waves in a classical environment to do the work of quantum information processing without the time limitations and fragility.
Imaging of exotic quantum particles as building blocks for quantum computing
Researchers have imaged an exotic quantum particle -- called a Majorana fermion -- that can be used as a building block for future qubits and eventually the realization of quantum computers.
Virginia Tech researchers lead breakthrough in quantum computing
A team of Virginia Tech chemistry and physics researchers have advanced quantum simulation by devising an algorithm that can more efficiently calculate the properties of molecules on a noisy quantum computer.
Limitation exposed in promising quantum computing material
Physicists have theorized that a new type of material, called a three-dimensional (3-D) topological insulator (TI), could be a candidate to create qubits for quantum computing due to its special properties.
New material shows high potential for quantum computing
A joint team of scientists at the University of California, Riverside, and the Massachusetts Institute of Technology is getting closer to confirming the existence of an exotic quantum particle called Majorana fermion, crucial for fault-tolerant quantum computing -- the kind of quantum computing that addresses errors during its operation.
A sound idea: a step towards quantum computing
Researchers at the University of Tsukuba and the University of Pittsburgh have developed a new method for using lasers to create tiny lattice waves inside silicon crystals that can encode quantum information.
Quantum computing boost from vapour stabilising technique
A technique to stabilise alkali metal vapour density using gold nanoparticles, so electrons can be accessed for applications including quantum computing, atom cooling and precision measurements, has been patented by scientists at the University of Bath.
Quantum cloud computing with self-check
With a quantum coprocessor in the cloud, physicists from Innsbruck, Austria, open the door to the simulation of previously unsolvable problems in chemistry, materials research or high-energy physics.
More Quantum Computing News and Quantum Computing Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.