Nav: Home

UD's Jaisi wins NSF Career Award for research on phosphorus in soil

January 24, 2017

Much like criminal forensic scientists use fingerprints to identify guilty parties at crime scenes, the University of Delaware's Deb Jaisi utilizes isotopic fingerprinting technology to locate the sources of phosphorus compounds and studies the degraded products they leave behind in soil and water.

Jaisi, an assistant professor in the Department of Plant and Soil Sciences in UD's College of Agriculture and Natural Resources (CANR), recently received a highly prestigious National Science Foundation Faculty Early Career Development Award, and said that he will use the five-year, $570,000 grant to further his source tracking research, looking specifically at the sources and fate of phytate, the most common organic phosphorus in soils.

In addition, an educational component of the research will contribute to the development of an Environmental Forensics and Society course at UD, enhance curricula at Delaware Technical Community College and develop an environmental forensics summer camp as part of the 4-H Positive Youth Development and mentoring organization summer activities.

Of the award and Jaisi's research interests overall, CANR Dean Mark Rieger said, "In just five short years at UD, Dr. Jaisi has become a national authority in isotope tracking methodologies, and he applies them to one of the most important issues at the ag-environment nexus: the sources and fates of phosphorus in the environment. This award is not only recognition of his prior impact on the field, but a testament to his future potential as a leader in soil biogeochemistry."

Janine Sherrier, chair of the Department of Plant and Soil Sciences, said that "Dr. Jaisi's research provides a new dimension and a complementary approach to our department's research program on phosphorous cycling in the environment."

Natural versus human contribution

Surface water eutrophication and bottom water dead zones in the Chesapeake Bay have been an issue for decades.

When it comes to phosphorous sources and biogeochemical processes that contribute to the water quality in the Chesapeake, Jaisi said that the quantitative identity and original sources of phosphorous are still not fully understood.

"A molecular level understanding of the sources and processes that impact water quality is something I am interested pursuing in my career," he said.

This research will look at the phytates, which are phosphorus reserves in grains and are the most common forms of organic phosphorous in the environment.

"Monogastric animals like a pig or a chicken cannot digest phytate in their grain-based diet, so it's going to end up in manure. The application of manure in agriculture soil causes a portion of it to leach out of the soil and eventually finds its way to open waters," said Jaisi.

The other major form of phytate in the environment comes from plant leaves. While plants have an unusually small amount of phytate, the large numbers of leaves that fall off in early fall make this source of phytate abundant, as well.

"Using isotope fingerprints of phytate, we can identify whether phytate is derived from a plant, which is a natural process, versus manure, which is related to anthropogenic activity," Jaisi said. "Distinct seasonality of both processes allows us to provide precise information not only on the source but the exact residence time of phytate and its products in the environment. Understanding the role of the particular source of phytate on water quality is the primary information needed to devise appropriate water quality management."

The question of anthropogenic phosphorous loading versus natural phosphorous loading in the Chesapeake is one that Jaisi said gets asked a lot and that his research is central to answering.

"The question is not natural versus agriculture-driven, as both contribute, but how much does one source contribute with regard to the water quality," Jaisi said. "I am extremely lucky to work with a dynamic group of postdoctoral associates, graduate and undergraduate students on my team who are as committed to these problems as I am. Together we are dedicated to making a meaningful impact on science and society."

In addition to looking for the source of the phytate, Jaisi seeks to understand how one form of phytate transforms to the other form called "stereoisomers."

Specifically, Jaisi is interested in understanding if it is a biologically coded reaction or a chemical transformation. Since some of the stereoisomers are more stable than others, addressing the first question will unravel whether there is a yet unknown microbial process to synthesize them for yet unknown reasons.

In regard to the impact on water quality, Jaisi will also investigate the residence times of different products of phytate and stereoisomers in soil and water, which will help address the longstanding scientific question concerning phytate accumulation versus degradation and its environmental impacts.

Jaisi's research will split into controlled experiments in his laboratory and a field study in East Creek, a body of water that flows into the Chesapeake Bay in Crisfield, Maryland.

The resulting data and information on phytate pathways and processes could be useful to collective efforts by a series of federal, state, and local agencies involved in improving water quality including the Chesapeake Bay Program, such as the U.S. Geological Survey and the U.S. Environmental Protection Agency, which collectively develop Chesapeake Bay restoration plans.

Educational component

One of the key elements of the NSF Career program is to enrich educational experiences and inspire students in science, technology, engineering and mathematics (STEM) fields.

The research will lead to the development of an Environmental Forensics and Society course at UD and enhance curricula at Delaware Technical Community College.

Lakshmi Cyr, instructional director and department chairperson of the biology and chemistry department at Delaware Tech, said that the collaboration between the two institutions, "provides enhanced training for DTCC program graduates, promotes student engagement, and eases students' transition to four year institutions. DTCC interns had very positive experiences working with Dr. Jaisi. They demonstrated improved laboratory skills and a greater understanding of the research process, which led to post-graduation success in their chosen careers or continued education path."

In addition, Jaisi is looking forward to the environmental forensics summer camp through the Delaware 4H program, in which approximately 200 students will take part, as he is passionate about environmental forensics in different dimensions from research to the course development and to the summer programs.

"A series of contaminants impacts human and environmental health and it could be a pesticide or another toxin or a heavy element. The unique way we approach the forensic question is we use source fingerprints to identify where did they come from and where do they end up? It is important we raise the public concern about environmental quality and our habitat. Thus, we're going to make them aware of how important it is to protect the environment where we live," said Jaisi.
-end-


University of Delaware

Related Water Quality Articles:

Lessening water quality problems caused by hurricane-related flooding
June 1 is the start of hurricane season in the Atlantic, and with 2020 predicted to be particularly active, residents in coastal regions are keeping watchful eyes on the weather.
Control of anthropogenic atmospheric emissions can improve water quality in seas
A new HKU research highlighted the importance of reducing fossil fuel combustion not only to curb the trend of global warming, but also to improve the quality of China's coastal waters.
Pharma's potential impact on water quality
When people take medications, these drugs and their metabolites can be excreted and make their way to wastewater treatment plants.
Study: Your home's water quality could vary by the room -- and the season
A study has found that the water quality of a home can differ in each room and change between seasons, challenging the assumption that the water in a public water system is the same as the water that passes through a building's plumbing at any time of the year.
Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.
How anti-sprawl policies may be harming water quality
Urban growth boundaries are created by governments in an effort to concentrate urban development -- buildings, roads and the utilities that support them -- within a defined area.
China's inland surface water quality significantly improves
A new study shows that China's inland surface water quality improved significantly from 2003-2017, coinciding with major efforts beginning in 2001 to reduce water pollution in the country.
Studying water quality with satellites and public data
The researchers built a novel dataset of more than 600,000 matchups between water quality field measurements and Landsat imagery, creating a 'symphony of data.'
How to improve water quality in Europe
Toxic substances from agriculture, industry and households endanger water quality in Europe -- and by extension, ecosystems and human health.
Revolutionizing water quality monitoring for our rivers and reef
New, lower-cost help may soon be on the way to help manage one of the biggest threats facing the Great Barrier Reef.
More Water Quality News and Water Quality Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

Uncounted
First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at Radiolab.org/donate.