Nav: Home

Watching gene editing at work to develop precision therapies

January 24, 2017

MADISON, Wis. -- University of Wisconsin-Madison engineers have developed methods to observe gene editing in action, and they're putting those capabilities to work to improve genetic engineering techniques.

"Ultimately, the knowledge we gain from this project has the potential to set the foundation for new preclinical platforms in precision medicine," says Krishanu Saha, an assistant professor of biomedical engineering at UW-Madison and the principal investigator on the project.

A new technique called CRISPR-Cas9 gives researchers the ability to make changes to the DNA of, theoretically, any living organism that has DNA.

"CRISPR-Cas9 lets researchers rewrite the genome in a very precise manner," says Saha.

That precision is particularly meaningful for treatment of diseases caused by well-known faults in genes -- otherwise incurable diseases such as sickle cell anemia, the fatal lung disorder cystic fibrosis, and the blindness-causing Leber congenital amaurosis. CRISPR-Cas9 could be a way to prevent or reverse those disorders.

But one of the hurdles between CRISPR-Cas9 research and the clinic is that much of what actually happens inside cells while the tool makes its edits has been mysterious.

"There's been a gap in understanding how several components of CRISPR-Cas9 achieve gene modification in human cells," says Saha. "Until we understand why some strategies fail and why some succeed, the use of genome surgery tools will be limited."

With support from a $1.8 million grant from the National Institutes of Health (NIH), Saha could bridge that gap and help pave the way for personalized treatment for genetic diseases.

His lab has already found one method to illuminate the inner workings of gene editing, developing a way to label parts of cells and CRISPR-Cas9 in such a manner that they may observe important changes occurring while genome-editing happens in real time. The researchers will use those techniques to monitor CRISPR-Cas9 as it works inside cells in petri dishes that mimic tissues from real patients. Drawing on their expertise with stem cells to make model organs in which to test different genome-editing strategies, Saha and collaborators will investigate multiple approaches to correcting the problems for several genetic diseases in numerous different types of tissues.

"This project is different from the status quo," says Saha. "Systematically changing multiple components of CRISPR-Cas9 at a time to test in patient-derived cells will lead to greater understanding of the biological processes important for genome surgery."

Saha's work is supported by a relatively new type of grant from NIH, the Maximizing Investigators' Research Award, that aims to boost scientific productivity and innovation by providing both greater stability in funding and more freedom to pursue revolutionary research. Saha is one of 93 promising young investigators nationwide identified for the transformative potential of his work.
Sam Million-Weaver,

University of Wisconsin-Madison

Related Stem Cells Articles:

First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
More Stem Cells News and Stem Cells Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Erasing The Stigma
Many of us either cope with mental illness or know someone who does. But we still have a hard time talking about it. This hour, TED speakers explore ways to push past — and even erase — the stigma. Guests include musician and comedian Jordan Raskopoulos, neuroscientist and psychiatrist Thomas Insel, psychiatrist Dixon Chibanda, anxiety and depression researcher Olivia Remes, and entrepreneur Sangu Delle.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...