Nav: Home

Watching gene editing at work to develop precision therapies

January 24, 2017

MADISON, Wis. -- University of Wisconsin-Madison engineers have developed methods to observe gene editing in action, and they're putting those capabilities to work to improve genetic engineering techniques.

"Ultimately, the knowledge we gain from this project has the potential to set the foundation for new preclinical platforms in precision medicine," says Krishanu Saha, an assistant professor of biomedical engineering at UW-Madison and the principal investigator on the project.

A new technique called CRISPR-Cas9 gives researchers the ability to make changes to the DNA of, theoretically, any living organism that has DNA.

"CRISPR-Cas9 lets researchers rewrite the genome in a very precise manner," says Saha.

That precision is particularly meaningful for treatment of diseases caused by well-known faults in genes -- otherwise incurable diseases such as sickle cell anemia, the fatal lung disorder cystic fibrosis, and the blindness-causing Leber congenital amaurosis. CRISPR-Cas9 could be a way to prevent or reverse those disorders.

But one of the hurdles between CRISPR-Cas9 research and the clinic is that much of what actually happens inside cells while the tool makes its edits has been mysterious.

"There's been a gap in understanding how several components of CRISPR-Cas9 achieve gene modification in human cells," says Saha. "Until we understand why some strategies fail and why some succeed, the use of genome surgery tools will be limited."

With support from a $1.8 million grant from the National Institutes of Health (NIH), Saha could bridge that gap and help pave the way for personalized treatment for genetic diseases.

His lab has already found one method to illuminate the inner workings of gene editing, developing a way to label parts of cells and CRISPR-Cas9 in such a manner that they may observe important changes occurring while genome-editing happens in real time. The researchers will use those techniques to monitor CRISPR-Cas9 as it works inside cells in petri dishes that mimic tissues from real patients. Drawing on their expertise with stem cells to make model organs in which to test different genome-editing strategies, Saha and collaborators will investigate multiple approaches to correcting the problems for several genetic diseases in numerous different types of tissues.

"This project is different from the status quo," says Saha. "Systematically changing multiple components of CRISPR-Cas9 at a time to test in patient-derived cells will lead to greater understanding of the biological processes important for genome surgery."

Saha's work is supported by a relatively new type of grant from NIH, the Maximizing Investigators' Research Award, that aims to boost scientific productivity and innovation by providing both greater stability in funding and more freedom to pursue revolutionary research. Saha is one of 93 promising young investigators nationwide identified for the transformative potential of his work.
Sam Million-Weaver,

University of Wisconsin-Madison

Related Stem Cells Articles:

Computer simulations visualize how DNA is recognized to convert cells into stem cells
Researchers of the Hubrecht Institute (KNAW - The Netherlands) and the Max Planck Institute in Münster (Germany) have revealed how an essential protein helps to activate genomic DNA during the conversion of regular adult human cells into stem cells.
First events in stem cells becoming specialized cells needed for organ development
Cell biologists at the University of Toronto shed light on the very first step stem cells go through to turn into the specialized cells that make up organs.
Surprising research result: All immature cells can develop into stem cells
New sensational study conducted at the University of Copenhagen disproves traditional knowledge of stem cell development.
The development of brain stem cells into new nerve cells and why this can lead to cancer
Stem cells are true Jacks-of-all-trades of our bodies, as they can turn into the many different cell types of all organs.
Healthy blood stem cells have as many DNA mutations as leukemic cells
Researchers from the Princess Máxima Center for Pediatric Oncology have shown that the number of mutations in healthy and leukemic blood stem cells does not differ.
New method grows brain cells from stem cells quickly and efficiently
Researchers at Lund University in Sweden have developed a faster method to generate functional brain cells, called astrocytes, from embryonic stem cells.
NUS researchers confine mature cells to turn them into stem cells
Recent research led by Professor G.V. Shivashankar of the Mechanobiology Institute at the National University of Singapore and the FIRC Institute of Molecular Oncology in Italy, has revealed that mature cells can be reprogrammed into re-deployable stem cells without direct genetic modification -- by confining them to a defined geometric space for an extended period of time.
Researchers develop a new method for turning skin cells into pluripotent stem cells
Researchers at the University of Helsinki, Finland, and Karolinska Institutet, Sweden, have for the first time succeeded in converting human skin cells into pluripotent stem cells by activating the cell's own genes.
In mice, stem cells seem to work in fighting obesity! What about stem cells in humans?
This release aims to summarize the available literature in regard to the effect of Mesenchymal Stem Cells transplantation on obesity and related comorbidities from the animal model.
TSRI researchers identify gene responsible for mesenchymal stem cells' stem-ness'
Researchers at The Scripps Research Institute recently published a study in the journal Cell Death and Differentiation identifying factors crucial to mesenchymal stem cell differentiation, providing insight into how these cells should be studied for clinical purposes.
More Stem Cells News and Stem Cells Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at