Nav: Home

Implantable medical devices bolstered by next-gen surface modification

January 24, 2018

A discovery by University of Sydney researchers could underpin a new class of implantable devices that provide biological signals to surrounding tissue for better integration with the body and reduced risk of infection.

Modern medicine increasingly relies on implantable biomedical devices but their effectiveness is often limited because of unsuccessful integration with host tissue or the development of untreatable infections, necessitating replacement of the device through revision surgery.

The team at the Applied Plasma Physics and Surface Engineering Laboratory has developed practical techniques to guide and attach peptides to surfaces; computer simulations and experiments demonstrated control of both peptide orientation and surface concentration, which can be achieved by applying an electric field like that delivered by a small household-sized battery.

The findings are published today in Nature Communications.

Corresponding author Professor of Applied Physics and Surface Engineering Marcela Bilek said biomaterial coatings can mask the implanted devices and mimic surrounding tissue.

"The holy grail is a surface that interacts seamlessly and naturally with host tissue through biomolecular signalling," said Professor Bilek, who is a member of the University of Sydney Nano Institute and the Charles Perkins Centre.

Robust attachment of biological molecules to the bio-device surface is required to achieve this, as enabled by unique surface modification processes developed by Professor Bilek.

"Although proteins have successfully been used in a number of applications, they don't always survive harsh sterilisation treatments - and introduce the risk of pathogen transfer due to their production in micro-organisms," Professor Bilek said.

Professor Bilek - together with Dr Behnam Akhavan from the School of Aerospace, Mechanical and Mechatronic Engineering and the School of Physics and lead author PhD candidate, Lewis Martin from the School of Physics - are exploring the use of short protein segments called peptides that, when strategically designed, can recapitulate the function of the protein.

Mr Martin said the team was able to tune the orientation of extremely small biomolecules (less than 10 nanometres in size) on the surface. "We used specialised equipment to perform the experiments, but the electric fields could be applied by anyone using a home electronics kit," he said.

Dr Akhavan said that assuming industry support and funding for clinical trials, improved implants could be available to patients within five years.

"The application of our approach ranges from bone-implants to cardiovascular stents and artificial blood vessels," Dr Akhavan said.

"For the bone implantable devices, for example, such modern bio-compatible surfaces will directly benefit patients suffering from bone fracture, osteoporosis, and bone cancer."

Because of their small size, the peptides can be produced synthetically and they are resilient during sterilisation. The main difficulty in using peptides is ensuring they are attached at appropriate densities and in orientations that effectively expose their active sites.

Using applied electric fields and buffer chemistry, the researchers discovered several new levers that control peptide attachment. Charge separation on peptides creates permanent dipole moments that can be aligned with an electric field to provide optimal orientation of the molecules and the amount of peptide immobilised can also be tuned by the electrostatic interactions when the peptides have an overall charge.

The paper said this knowledge is being used to design strategies to create a new generation of synthetic biomolecules.

"Our findings shed light on mechanisms of biomolecule immobilisation that are extremely important for the design of synthetic peptides and biofunctionalisation of advanced implantable materials," the paper states.
-end-


University of Sydney

Related Clinical Trials Articles:

Giving children a voice in clinical trials
Children as young as 8 years old with incurable cancer can reliably characterize the impact an experimental therapy has on their symptoms and quality of life -- even at the earliest stages of drug development -- making self-reported patient outcomes a potential new clinical trial endpoint.
Better health for women involved in clinical trials
Women who participate in obstetric and gynecology clinical trials experience improved health outcomes compared to those who are not involved in trials, according to research by Queen Mary University of London.
Final artificial pancreas clinical trials now open
Clinical trials are now enrolling to provide the final tests for a University of Virginia-developed artificial pancreas to automatically monitor and regulate blood-sugar levels in people with type 1 diabetes.
Why the bar needs to be raised for human clinical trials
Standards for authorizing first-time trials of drugs in humans are lax, and should be strengthened in several ways, McGill University researchers argue in a paper published today in Nature.
New drug formulary will help expedite use of agents in clinical trials
The National Cancer Institute (NCI) today launched a new drug formulary (the 'NCI Formulary') that will enable investigators at NCI-designated Cancer Centers to have quicker access to approved and investigational agents for use in preclinical studies and cancer clinical trials.
Review examines diversity in dermatology clinical trials
Racial and ethnic groups can be underrepresented in medical research.
Reshaping the future of global clinical trials practice
Researchers at the University of Liverpool have developed a new international guideline to help standardize how results from clinical trial studies are reported.
Fewer cardiovascular drugs being studied in clinical trials
The number of cardiovascular drugs in the research pipeline has declined across all phases of development in the last 20 years even as cardiovascular disease has become the No.
Sex hormones skew outcomes in clinical trials -- here's how
Clinical research often excludes females from their trials under the assumption that 'one size fits all,' that a painkiller or antidepressant will be equally effective in subjects of either sex, but a growing number of scientists are criticizing this approach.
Nearly half of pediatric clinical trials go unfinished or unpublished
Clinical trials in children commonly go either uncompleted or unpublished, finds a comprehensive study conducted by researchers at Boston Children's Hospital.

Related Clinical Trials Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".