Nav: Home

Targeting bladder cancer's Achilles heel: stem cells

January 24, 2018

Two different proteins work separately as well as synergistically to feed a small pool of stem cells that help bladder cancer resist chemotherapy, research led by a Johns Hopkins Kimmel Cancer Center scientist suggests. The finding, published online in Cancer Research, could lead to new targets to fight this deadly disease and potentially other cancers as well.

Urothelial carcinoma of the bladder (UCB) is the most common cancer of the urinary tract. Just in the U.S., tens of thousands of patients are diagnosed with this disease every year, which kills more than 100,000 people worldwide annually.

One reason that bladder cancer is so deadly is the propensity for these tumors to develop resistance to the drugs typically used as frontline therapies, explains study leader Mohammad Hoque, D.D.S, Ph.D., an associate professor of otolaryngology-head and neck surgery, urology, oncology and member of the Johns Hopkins Greenberg Bladder Cancer Institute. Recent research suggests that this resistance is caused by a small pool of cancer stem cells (CSCs) within these tumors that isn't killed with chemotherapies, leading tumors to regrow and spread even after initial treatment success.

Although eliminating these CSCs is critical to fighting bladder cancer, Hoque adds, little is known about the mechanisms behind how tumors maintain their stem cell populations. To investigate, Hoque and his team, including collaborators from the Allegheny Health Network Cancer Institute, examined the roles of different proteins that had already been identified as being associated with CSCs' unique cancer-driving traits: Yes-associated protein1 (YAP1) and cyclooxygenase 2 (COX2).

Working with CSCs from human UCB tissue samples in petri dishes, the researchers used a drug known as celecoxib or genetic techniques to decrease the amount of COX2 that these cells produced. Their results showed that when COX2 expression went down, the amount of SOX2--a protein that other experiments showed was pivotal to the CSC's ability to self-renew, migrate, and invade surrounding tissue--also decreased somewhat. Similarly, inhibiting YAP1 with a drug known as verteporfin or with genetic techniques also led to a modest decrease in SOX2.

However, when the researchers inhibited production of both COX2 and YAP1 at the same time, SOX2 expression was dramatically inhibited, leading to a severe reduction of the ability of these cells to grow into tumors. The findings suggest that COX2 and YAP1 work both independently and together to regulate CSC activity through SOX2.

"Thus, targeting COX2 and YAP1 together may be indispensable for eradicating CSCs," Hoque says.

Indeed, using a different model in which UCB CSCs were grafted into mice and allowed to grow into tumors, the researchers found that inhibiting either COX2 or YAP1 with drugs enhanced the tumors' response to gemcitabine and cisplatin, a combination chemotherapy regimen often used to treat UCB. But using both inhibiting drugs together with the combination chemotherapy led to an even more dramatic response, causing the animals' tumors to continuously regress during the entire treatment cycle.

Further experiments suggested that encouraging UCB CSCs to overexpress COX2 and YAP1, as patients' tumor samples tend to do, led the cells to become resistant to drugs that target a cancer-related protein known as the epidermal growth factor receptor (EGFR). When the researchers treated the tumor-engrafted mice with a drug known as erlotinib that targets EGFR, along with the combination chemotherapy treatment and COX2 and YAP1 inhibitors, they found the most dramatic tumor regression of all, even in an aggressive subcategory of UCB known as basal-type.

Together, Hoque says, these results suggest that COX2 and YAP1 work individually and together to regulate CSCs in UCB. Targeting both proteins jointly could help improve the response of tumors to standard chemotherapy regimens and avoid chemotherapy resistance.

"Because the drugs that inhibit these proteins are already FDA approved to treat other conditions," Hoque adds, "it sets the stage for an easy transition to clinical trials."
-end-
Other researchers who contributed to this study include Akira Ooki, Maria Del Carmen Rodriguez Pena, Luigi Marchionni, Wikum Dinalankara, Asma Begum, Noah M. Hahn, Christopher J. VandenBussche, Zeshaan A. Rasheed, George J. Netto, and David Sidransky, all of Johns Hopkins, and Shifeng Mao, of Allegheny Health Network Cancer Institute.

The research was funded by the Flight Attendant Medical Research Institute Young Clinical Scientist Award, a Career Development award from SPORE Cervical Cancer Grants P50 CA098252 (M.O.Hoque), Allegheny Health Network-Johns Hopkins Cancer Research Fund and National Cancer Institute grants P30CA006973 and 1R01CA163594-01.

Other researchers who contributed to this study include Akira Ooki, Maria Del Carmen Rodriguez Pena, Luigi Marchionni, Wikum Dinalankara, Asma Begum, Noah M. Hahn, Christopher J. VandenBussche, Zeshaan A. Rasheed, George J. Netto, and David Sidransky, all of Johns Hopkins, and Shifeng Mao, of Allegheny Health Network Cancer Institute.

The research was funded by the Flight Attendant Medical Research Institute Young Clinical Scientist Award, a Career Development award from SPORE Cervical Cancer Grants P50 CA098252 (M.O.Hoque), Allegheny Health Network-Johns Hopkins Cancer Research Fund and National Cancer Institute grants P30CA006973 and 1R01CA163594-01.

Johns Hopkins Medicine

Related Stem Cells Articles:

A protein that stem cells require could be a target in killing breast cancer cells
Researchers have identified a protein that must be present in order for mammary stem cells to perform their normal functions.
Approaching a decades-old goal: Making blood stem cells from patients' own cells
Researchers at Boston Children's Hospital have, for the first time, generated blood-forming stem cells in the lab using pluripotent stem cells, which can make virtually every cell type in the body.
New research finds novel method for generating airway cells from stem cells
Researchers have developed a new approach for growing and studying cells they hope one day will lead to curing lung diseases such as cystic fibrosis through 'personalized medicine.'
Mature heart muscle cells created in the laboratory from stem cells
Generating mature and viable heart muscle cells from human or other animal stem cells has proven difficult for biologists.
Mutations in bone cells can drive leukemia in neighboring stem cells
DNA mutations in bone cells that support blood development can drive leukemia formation in nearby blood stem cells.
Scientists take aging cardiac stem cells out of semiretirement to improve stem cell therapy
With age, the chromosomes of our cardiac stem cells compress as they move into a state of safe, semiretirement.
Purest yet liver-like cells generated from induced pluripotent stem cells
A team of researchers from the Medical University of South Carolina and elsewhere has found a better way to purify liver cells made from induced pluripotent stem cells.
Stem cell scientists discover genetic switch to increase supply of stem cells from cord blood
International stem cell scientists, co-led in Canada by Dr. John Dick and in the Netherlands by Dr.
Stem cells from diabetic patients coaxed to become insulin-secreting cells
Signaling a potential new approach to treating diabetes, researchers at Washington University School of Medicine in St.

Related Stem Cells Reading:

Stem Cell Therapy: A Rising Tide: How Stem Cells Are Disrupting Medicine and Transforming Lives
by Neil H Riordan (Author)

Stem cells are the repair cells of your body.  When there aren’t enough of them, or they aren’t working properly, chronic diseases can manifest and persist. From industry leaders, sport stars, and Hollywood icons to thousands of everyday, ordinary people, stem cell therapy has helped when standard medicine failed. Many of them had lost hope. These are their stories.

Neil H Riordan, author of MSC: Clinical Evidence Leading Medicine’s Next Frontier, the definitive textbook on clinical stem cell therapy, brings you an easy-to-read book about how and why stem cells work,... View Details


Stem Cell Revolution: Discover 26 Disruptive Technological Advances to Stem Cell Activation
by Joseph Christiano (Author)

Addressing chronic back pain, diabetes, joint replacements, osteoarthritis, neurological issues, and more, Joseph “Dr. Joe” Christiano reveals
how this cutting-edge therapy can rapidly replace damaged cells in the body with no side effects or allergic reactions.
If you have been disappointed by ineffective treatments, the answer to improving your health may be in your stem cells. Dr. Joe explains
how adult stem cell therapy and activators are two of the new technologies in regenerative medicine that will be game changers in medical history.
... View Details


Stem Cells: An Insider's Guide
by Paul Knoepfler (Author)

Stem Cells: An Insider's Guide is an exciting new book that takes readers inside the world of stem cells guided by international stem cell expert, Dr. Paul Knoepfler. Stem cells are catalyzing a revolution in medicine. The book also tackles the exciting and hotly debated area of stem cell treatments that are capturing the public's imagination. In the future they may also transform how we age and reproduce. However, there are serious risks and ethical challenges, too. The author's goal with this insider's guide is to give readers the information needed to distinguish between the... View Details


Stem Cells: Promise and Reality
by Lygia V Pereira (Author)

Stem Cells: Promises and Reality will tell you everything you have always wanted to know about stem cells, but could not understand the field from elsewhere. Stem cells are the great therapeutic promise of the century, and this evolving field of research and medicine brings with it many legal, ethical and psychological issues that must be discussed by society as a whole. Written so as to be accessible to general readers as well as specialists, this book explains what stem cells are, and the different aspects of stem cell research and applications. The book will enable the reader to understand... View Details


Stem Cells: A Short Course
by Rob Burgess (Author)

Stem Cells: A Short Course is a comprehensive text for students delving into the rapidly evolving discipline of stem cell research. Comprised of eight chapters, the text addresses all of the major facets and disciplines related to stem cell biology and research. A brief history of stem cell research serves as an introduction, followed by coverage of stem cell fundamentals; chapters then explore embryonic and fetal amniotic stem cells, adult stem cells, nuclear reprogramming, and cancer stem cells. The book concludes with chapters on stem cell applications, including the role of stem... View Details


Stem Cells Are Everywhere
by Irv Weissman MD (Author)

An engaging introduction to stem cells for young scientists
 
How do you heal when you cut your skin or break a bone? How does your body keep making new blood or brain cells, or even second teeth? How does a plant keep growing larger? The answers lie in stem cells, which are found in every growing plant and animal. Keeping the subject simple enough for young readers, a pioneer of stem cell research explains cells, tissues, normal growth, what can go wrong, and how to fix it. View Details


The Stem Cell Revolution
by Mark Berman MD (Author), Elliot Lander MD (Contributor)

The book describes the journey into the growing arena of clinical stem cell therapy by highlighting not only the road that brought a team of physicians together but also real stories from a number of their patients that were given their health back through the magic of stem cell therapy. Your fat is loaded with stem cells that can be used now to treat and reverse a large number of inflammatory and degenerative conditions. Most people have no idea that these magical cells actually exist right within our bodies. They think that they must wait until Big Pharma or a university PhD manufactures... View Details


Stem Cells: A Very Short Introduction
by Jonathan Slack (Author)

Embryonic stem cells have been hot-button topics in recent years, generating intense public interest as well as much confusion and misinformation. In this Very Short Introduction, leading authority Jonathan Slack offers a clear and informative overview of stem cells--what they are, what scientists do with them, what stem cell therapies are available today, and how they might be used in the future. Slack explains the difference between embryonic stem cells, which exist only in laboratory cultures, and tissue-specific stem cells, which exist in our bodies, and he discusses how... View Details


Stem Cells For Dummies
by Lawrence S.B. Goldstein (Author), Meg Schneider (Author)

The first authoritative yet accessible guide to this controversial topic

Stem Cell Research For Dummies offers a balanced, plain-English look at this politically charged topic, cutting away the hype and presenting the facts clearly for you, free from debate. It explains what stem cells are and what they do, the legalities of harvesting them and using them in research, the latest research findings from the U.S. and abroad, and the prospects for medical stem cell therapies in the short and long term.

Explains the differences between adult stem cells and embryonic/umbilical... View Details


Essentials of Stem Cell Biology, Third Edition
by Robert Lanza (Editor), Anthony Atala (Editor)

First developed as an accessible abridgement of the successful Handbook of Stem Cells, Essentials of Stem Cell Biology serves the needs of the evolving population of scientists, researchers, practitioners, and students embracing the latest advances in stem cells. Representing the combined effort of 7 editors and more than 200 scholars and scientists whose pioneering work has defined our understanding of stem cells, this book combines the prerequisites for a general understanding of adult and embryonic stem cells with a presentation by the world's experts of the latest... View Details

Best Science Podcasts 2018

We have hand picked the best science podcasts for 2018. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Confronting Stigma
Why do we harshly judge certain behaviors or conditions, making it harder to talk honestly about them? This hour, TED speakers confront stigmas around addiction, depression, HIV and sex work. Guests include journalist Johann Hari, TV/film producer and mental health advocate Nikki Webber Allen, HIV awareness educator Arik Hartmann, and sex worker and activist Juno Mac.
Now Playing: Science for the People

#461 Adhesives
This week we're discussing glue from two very different times. We speak with Dr. Jianyu Li about his research into a new type of medical adhesive. And Dr. Geeske Langejans explains her work making and investigating Stone Age and Paleolithic glues.