Nav: Home

New sensor for measuring electric field strength

January 24, 2018

Accurately measuring electric fields is important in a variety of applications, such as weather forecasting, process control on industrial machinery, or ensuring the safety of people working on high-voltage power lines. Yet from a technological perspective, this is no easy task.

In a break from the design principle that has been followed by all other measuring devices to date, a research team at TU Wien has now developed a silicon-based sensor as a microelectromechanical system (MEMS). Devised in conjunction with the Department for Integrated Sensor Systems at Danube University Krems, this sensor has the major advantage that it does not distort the very electric field it is currently measuring. An introduction to the new sensor has also been published in the electronics journal "Nature Electronics".

Distorting measuring devices

"The equipment currently used to measure electric field strength has some significant downsides," explains Andreas Kainz from the Institute of Sensor and Actuator Systems (Faculty of Electrical Engineering, TU Wien). "These devices contain parts that become electrically charged. Conductive metallic components can significantly alter the field being measured; an effect that becomes even more pronounced if the device also has to be grounded to provide a reference point for the measurement." Such equipment also tends to be relatively impractical and difficult to transport.

The sensor developed by the team at TU Wien is made from silicon and is based on a very simple concept: small, grid-shaped silicon structures measuring just a few micrometres in size are fixed onto a small spring. When the silicon is exposed to an electric field, a force is exerted on the silicon crystals, causing the spring to slightly compress or extend.

These tiny movements now need to be made visible, for which an optical solution has been designed: an additional grid located above the movable silicon grid is lined up so precisely that the grid openings on one grid are concealed by the other. When an electric field is present, the movable structure moves slightly out of perfect alignment with the fixed grid, allowing light to pass through the openings. This light is measured, from which the strength of the electric field can be calculated by an appropriately calibrated device.

Prototype achieves impressive levels of precision

The new silicon sensor does not measure the direction of the electric field, but its strength. It can be used for fields of a relatively low frequency of up to one kilohertz. "Using our prototype, we have been able to reliably measure weak fields of less than 200 volts per metre," says Andreas Kainz. "This means our system is already performing at roughly the same level as existing products, even though it is significantly smaller and much simpler." And there is still a great deal of potential for improvement, too: "Other methods of measurement are already mature approaches - we are just starting out. In future it will certainly be possible to achieve even significantly better results with our microelectromechanical sensor," adds Andreas Kainz confidently.
-end-
Original publication: https://www.nature.com/articles/s41928-017-0009-5

Contact:

Dr. Andreas Kainz
Institute of Sensor and Actuator Systems
TU Wien
Gußhausstraße 27-29, 1040 Vienna
T: 43-1-58801-76697
andreas.kainz@tuwien.ac.at

Vienna University of Technology

Related Silicon Articles:

To e-, or not to e-, the question for the exotic 'Si-III' phase of silicon
It would be difficult to overestimate the importance of silicon when it comes to computing, solar energy, and other technological applications.
Polymer-coated silicon nanosheets -- an alternative to graphene
Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene.
Bringing silicon to life
Living organisms have been persuaded to make chemical bonds not found in nature, a finding that may change how medicines and other chemicals are made in the future.
Bringing carbon-silicon bonds to life
Following a few tweaks, heme proteins can efficiently catalyze the formation of carbon-silicon bonds, which are not found in any known biological molecules, nor capable of being created through any existing biological processes.
What a twist: Silicon nanoantennas turn light around
Scientists at MIPT and their colleagues from ITMO University and the University of Texas at Austin have developed a nonlinear nanoantenna that can be used to scatter light in a desired direction by varying its intensity.
Obtaining of silicon nanowires becomes eco-friendly
Scientists from the Faculty of Physics, the Lomonosov Moscow State University have devised a technique of silicon nanowires synthesis.
Recharging on stable, amorphous silicon
Next-generation anodes for lithium ion batteries will probably no longer be made of graphite.
More stable qubits in perfectly normal silicon
The power of future quantum computers stems from the use of qubits, or quantum bits.
Silicon nanoparticles trained to juggle light
Silicon nanoparticles based devices would allow to transmit, reflect, or scatter incident light in a specified direction, depending on its intensity.
New silicon structures could make better biointerfaces
A team of researchers have engineered silicon particles one-fiftieth the width of a human hair, which could lead to 'biointerface' systems designed to make nerve cells fire and heart cells beat.

Related Silicon Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".