Nav: Home

A new genome for regeneration research

January 24, 2018

The planarian flatworm Schmidtea mediterranea is an extraordinary animal. Even when cut into tiny pieces, each piece can regenerate back into a complete and perfectly proportioned miniature planarian. Key to this ability are fascinating adult stem cells, a single one of which can restore a complete worm. But how Schmidtea mediterranea achieves these feats is so far poorly understood. An important step towards this goal is the first highly contiguous genome assembly of Schmidtea mediterranea that researchers at the Max Planck Institute of Molecular Cell Biology and Genetics (MPI-CBG) in Dresden in cooperation with the Heidelberg Institute for Theoretical Studies (HITS) report in the current issue of Nature. The assembly reveals a genome that contains novel giant repeat elements, new flatworm-specific genes, but also the absence of other genes that were so far thought to be absolutely essential for keeping an animal alive. The discovery has potential implications in the fields of regeneration research, stem cell biology and bioinformatics.

A complete and fully assembled genome is critical for understanding the biological characteristics of an organism. Scientists have previously attempted to sequence the genome of Schmidtea mediterranea, but ended up with a collection of more than 100,000 short pieces. The reason for this is that a great deal of the genome consists of many, nearly identical copies of the same sequence that repeats over and over.

New sequencing methods

To overcome this challenge of an exceptionally repetitive genome, the research groups of Jochen Rink and Eugene Myers at the MPI-CBG utilized Pacific Bioscience's long-read sequencing technology, operated at the DRESDEN-concept Sequencing Center, a joint operation between the MPI-CBG and the TU Dresden. This relatively new technology can directly "read" contiguous stretches of the genome up to 40,000 base pairs (or "letters") long. Such long reads are dramatically more effective at bridging repetitive stretches in the genome than the more broadly used 100-500 base pair reads, thus resulting in up to 100-fold improvements in genome assembly statistics over previous assemblies.

Siegfried Schloissnig (HITS) was primarily responsible for developing a novel software system, called "Marvel", that solves more of the jigsaw puzzle posed by the long-reads than previous such systems, and more efficiently. The assembly of the Schmidtea mediterranea genome involved eight terabytes of data that took the high-performance computing cluster at the HITS three weeks to complete.

Missing genes

But what can scientists actually do with the abundance of genetic information in a genome assembly? One of the surprises in the case of Schmidtea mediterranea was the likely absence of highly conserved genes such as MAD1 and MAD2. Both are present in nearly all other organisms because they fulfil a function in a checkpoint that ensures that both daughter cells get the same number of chromosomes after cell division. Yet despite the MAD1/2 gene loss, planarians retained the checkpoint function. How this is possible is one of the questions that the genome will help to answer. But Jochen Rink and his group are especially excited about using the genome assembly for understanding how planarians manage to regenerate from an arbitrary tissue piece. Rink explains: "We already know some of the genes required for regenerating a head, but now we can also search for the regulatory control sequences that activate the head genes only at the front end of a regenerating piece". Further, the Rink group has assembled a large collection of planarian species from around the world, many of which have lost the ability to regenerate. "With a powerful toolbox for the assembly of difficult genomes now in place, we hope to soon use genome comparisons to understand why some animals regenerate, while so many do not. At least in the case of flatworms", summarizes Rink.
-end-
Original publication

Markus Alexander Grohme, Siegfried Schloissnig, Andrei Rozanski, Martin Pippel, George Young, Sylke Winkler, Holger Brandl, Ian Henry, Andreas Dahl, Sean Powell, Michael Hiller, Eugene Myers, Jochen Christian Rink

Schmidtea mediterranea and the evolution of core cellular mechanisms.

Nature; 24 January, 2018

Max-Planck-Gesellschaft

Related Genome Articles:

Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
A new genome for regeneration research
The first complete genome assembly of planarian flatworm reveals a treasure trove on the function and evolution of genes.
Decoding the Axolotl genome
The sequencing of the largest genome to date lays the foundation for novel insights into tissue regeneration.
The Down's syndrome 'super genome'
Only 20 percent of foetuses with trisomy 21 reach full term.
More Genome News and Genome Current Events

Top Science Podcasts

We have hand picked the top science podcasts of 2019.
Now Playing: TED Radio Hour

In & Out Of Love
We think of love as a mysterious, unknowable force. Something that happens to us. But what if we could control it? This hour, TED speakers on whether we can decide to fall in — and out of — love. Guests include writer Mandy Len Catron, biological anthropologist Helen Fisher, musician Dessa, One Love CEO Katie Hood, and psychologist Guy Winch.
Now Playing: Science for the People

#541 Wayfinding
These days when we want to know where we are or how to get where we want to go, most of us will pull out a smart phone with a built-in GPS and map app. Some of us old timers might still use an old school paper map from time to time. But we didn't always used to lean so heavily on maps and technology, and in some remote places of the world some people still navigate and wayfind their way without the aid of these tools... and in some cases do better without them. This week, host Rachelle Saunders...
Now Playing: Radiolab

Dolly Parton's America: Neon Moss
Today on Radiolab, we're bringing you the fourth episode of Jad's special series, Dolly Parton's America. In this episode, Jad goes back up the mountain to visit Dolly's actual Tennessee mountain home, where she tells stories about her first trips out of the holler. Back on the mountaintop, standing under the rain by the Little Pigeon River, the trip triggers memories of Jad's first visit to his father's childhood home, and opens the gateway to dizzying stories of music and migration. Support Radiolab today at Radiolab.org/donate.