Nav: Home

Earth's core and mantle separated in a disorderly fashion

January 24, 2018

Washington, DC-- Plumes of hot rock surging upward from the Earth's mantle at volcanic hotspots contain evidence that the Earth's formative years may have been even more chaotic than previously thought, according to new work from a team of Carnegie and Smithsonian scientists published in Nature.

It is well understood that Earth formed from the accretion of matter surrounding the young Sun. Eventually the planet grew to such a size that denser iron metal sank inward, to form the beginnings of the Earth's core, leaving the silicate-rich mantle floating above.

But new work from a team led by Carnegie's Yingwei Fei and Carnegie and the Smithsonian's Colin Jackson argues that this mantle and core separation was not such an orderly process.

"Our findings suggest that as the core was extracted from the mantle, the mantle never fully mixed," Jackson explained. "This is surprising because core formation happened in the immediate wake of large impacts from other early Solar System objects that Earth experienced during its growth, similar to the giant impact event that later formed the Moon. Before now, it was widely thought that these very energetic impacts would have completely stirred the mantle, mixing all of its components into a uniform state."

The smoking gun that led the team to their hypothesis comes from unique and ancient tungsten and xenon isotopic signatures found at volcanic hotspots, such as Hawaii. Although it was believed that these plumes originated from the mantle's deepest regions, the origin of these unique isotopic signatures has been debated. The team believes that the answer lies in the chemical behavior of iodine, the parent element of xenon, at very high pressure.

Isotopes are versions of elements with the same number of protons, but different numbers of neutrons. Radioactive isotope of elements, such as iodine-129, are unstable. To gain stability, iodine-129 decays into xenon-129. Therefore, the xenon isotopic signatures in plume mantle samples are directly related to iodine's behavior during the period of core-mantle separation.

Using diamond anvil cells to recreate the extreme conditions under which Earth's core separated from its mantle, Jackson, Fei, and their colleagues--Carnegie's Neil Bennett and Zhixue Du and Smithsonian's Elizabeth Cottrell--determined how iodine was partitioning between metallic core and silicate mantle. They also demonstrated that if the nascent core separated from the deepest regions of the mantle while it was still growing, then these pockets of the mantle would possess the chemistry needed to explain the unique tungsten and xenon isotopic signatures, provided these pockets remained unmixed with the rest of the mantle all the way up through the present day.

According to Bennett: "The key behavior we identified was that iodine starts to dissolve into the core under very high pressures and temperatures. At these extreme conditions, iodine and hafnium, which decay radioactively to xenon and tungsten, display opposing preferences for core-forming metal. This behavior would lead to the same unique isotopic signatures now associated with hotspots."

Calculations from the team also predict that the tungsten and xenon isotopic signatures should be associated with dense pockets of the mantle.

"Like chocolate chips in cookie batter, these dense pockets of the mantle would be very difficult stir back in, and this may be a crucial aspect to the retention of their ancient tungsten and xenon isotopic signatures to the modern day," Jackson explained.

"Even more exciting is that there is increasing geophysical evidence that there actually are dense regions of mantle, resting just above the core--called ultralow velocity zones and large low shear velocity provinces. This work ties together these observations," Fei added. "The methodology developed here also opens new opportunities for directly studying the deep Earth processes."
-end-
This work was supported by the National Science Foundation, the Carnegie Institution for Science, and the Smithsonian Institution.

The Carnegie Institution for Science is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Behavior Articles:

Religious devotion as predictor of behavior
'Religious Devotion and Extrinsic Religiosity Affect In-group Altruism and Out-group Hostility Oppositely in Rural Jamaica,' suggests that a sincere belief in God -- religious devotion -- is unrelated to feelings of prejudice.
Brain stimulation influences honest behavior
Researchers at the University of Zurich have identified the brain mechanism that governs decisions between honesty and self-interest.
Brain pattern flexibility and behavior
The scientists analyzed an extensive data set of brain region connectivity from the NIH-funded Human Connectome Project (HCP) which is mapping neural connections in the brain and makes its data publicly available.
Butterflies: Agonistic display or courtship behavior?
A study shows that contests of butterflies occur only as erroneous courtships between sexually active males that are unable to distinguish the sex of the other butterflies.
Sedentary behavior associated with diabetic retinopathy
In a study published online by JAMA Ophthalmology, Paul D.
Curiosity has the power to change behavior for the better
Curiosity could be an effective tool to entice people into making smarter and sometimes healthier decisions, according to research presented at the annual convention of the American Psychological Association.
Campgrounds alter jay behavior
Anyone who's gone camping has seen birds foraging for picnic crumbs, and according to new research in The Condor: Ornithological Applications, the availability of food in campgrounds significantly alters jays' behavior and may even change how they interact with other bird species.
A new tool for forecasting the behavior of the microbiome
A team of investigators from Brigham and Women's Hospital and the University of Massachusetts have developed a suite of computer algorithms that can accurately predict the behavior of the microbiome -- the vast collection of microbes living on and inside the human body.
Is risk-taking behavior contagious?
Why do we sometimes decide to take risks and other times choose to play it safe?
Neural connectivity dictates altruistic behavior
A new study suggests that the specific alignment of neural networks in the brain dictates whether a person's altruism was motivated by selfish or altruistic behavior.

Related Behavior Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Bias And Perception
How does bias distort our thinking, our listening, our beliefs... and even our search results? How can we fight it? This hour, TED speakers explore ideas about the unconscious biases that shape us. Guests include writer and broadcaster Yassmin Abdel-Magied, climatologist J. Marshall Shepherd, journalist Andreas Ekström, and experimental psychologist Tony Salvador.
Now Playing: Science for the People

#513 Dinosaur Tails
This week: dinosaurs! We're discussing dinosaur tails, bipedalism, paleontology public outreach, dinosaur MOOCs, and other neat dinosaur related things with Dr. Scott Persons from the University of Alberta, who is also the author of the book "Dinosaurs of the Alberta Badlands".