Nav: Home

Brain-scan guided emergency stroke treatment can save more lives

January 24, 2018

Advances in brain imaging can identify a greater number of stroke patients who can receive therapy later than previously believed, according to a new study. The results of the Endovascular Therapy Following Imaging Evaluation for the Ischemic Stroke (DEFUSE 3) trial, presented at the International Stroke Conference 2018 in Los Angeles and published on Jan. 24 in the New England Journal of Medicine, demonstrated that physically removing brain clots up to 16 hours after symptom onset in selected patients led to improved outcomes compared to standard medical therapy. The study was funded by the National Institute of Neurological Disorders and Stroke (NINDS), part of the National Institutes of Health.

"These striking results will have an immediate impact and save people from life-long disability or death," said Walter Koroshetz, M.D., director NINDS. "I really cannot overstate the size of this effect. The study shows that one out of three stroke patients who present with at-risk brain tissue on their scans improve and some may walk out of the hospital saved from what would otherwise have been a devastating brain injury."

DEFUSE 3 was a large, multi-site study supported by NINDS' StrokeNet, which is a network of hospitals providing research infrastructure for multi-site clinical trials. This study was conducted at 38 centers across the United States and was led by Gregory W. Albers, M.D., professor of neurology and neurological sciences at Stanford University School of Medicine, in California, and director of the Stanford Stroke Center. The study was ended early by the NIH on recommendation of the independent Data and Safety and Monitoring Board because of overwhelming evidence of benefit from the clot removal procedure.

Ischemic stroke occurs when a cerebral blood vessel becomes blocked, cutting off the delivery of oxygen and nutrients to brain tissue. Brain tissue in the immediate area of the blockage, known as the core, cannot typically be saved from dying, and it can enlarge over time. However, it has long been thought that the area surrounding the core (known as the ischemic penumbra) has the potential to be saved based on how quickly the blood flow can be restored. Over the past two decades, scientists have been working to develop brain scanning methods, called perfusion imaging, that could identify patients with brain tissue that can still be salvaged by removing the blockage. In perfusion imaging, a standard dye is injected and scanned for a few minutes as it passes through the brain.

Using an automated software known as RAPID to analyze perfusion MRI or CT scans, the DEFUSE 3 researchers identified patients thought to have salvageable tissue up to 16 hours after stroke onset. The participants were randomized to either receive endovascular thrombectomy plus standard medical therapy or medical therapy alone.

Endovascular thrombectomy, or the physical removal of the blockage, is currently approved for use up to six hours following onset of stroke symptoms. Dr. Albers and the DEFUSE 3 researchers discovered that this intervention can be effective up to 16 hours after symptoms begin in this select group of patients. The findings showed that patients in the thrombectomy group had substantially better outcomes 90 days after treatment compared to those in the control group. For example, 45 percent of the patients treated with the clot removal procedure achieved functional independence compared to 17 percent in the control group. In addition, thrombectomy was associated with improved survival. According to the results 14 percent of the treated group had died within 90 days of the study, compared to 26 percent in the control group.

"Although stroke is a medical emergency that should be treated as soon as possible, DEFUSE 3 opens the door to treatment even for some patients who wake up with a stroke or arrive at the hospital many hours after their initial symptoms," said Dr. Albers.

DEFUSE 3 builds on results from the two earlier DEFUSE studies as well as the industry-sponsored DAWN trial, which used perfusion imaging technology to identify patients most likely to benefit from interventions such as thrombectomy. Those studies suggested that the advanced brain imaging could identify which patients could benefit from restoring blood flow in an extended treatment window.
-end-
This work was supported by the NINDS (NS086487, NS092076).

For more information, please visit: http://www.NIHstrokenet.org

stroke.nih.gov

References:

Albers GW et al. Thrombectomy for Stroke at 6 to 16 Hours with Selection by Perfusion Imaging. New England Journal of Medicine. January 24, 2018.

The NINDS is the nation's leading funder of research on the brain and nervous system. The mission of NINDS is to seek fundamental knowledge about the brain and nervous system and to use that knowledge to reduce the burden of neurological disease.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov.

NIH/National Institute of Neurological Disorders and Stroke

Related Stroke Articles:

Retraining the brain to see after stroke
A new study out today in Neurology, provides the first evidence that rigorous visual training restores rudimentary sight in patients who went partially blind after suffering a stroke, while patients who did not train continued to get progressively worse.
Catheter ablations reduce risks of stroke in heart patients with stroke history, study finds
Atrial fibrillation patients with a prior history of stroke who undergo catheter ablation to treat the abnormal heart rhythm lower their long-term risk of a recurrent stroke by 50 percent, according to new research from the Intermountain Medical Center Heart Institute.
Imaging stroke risk in 4-D
A new MRI technique developed at Northwestern University detects blood flow velocity to identify who is most at risk for stroke, so they can be treated accordingly.
Biomarkers may help better predict who will have a stroke
People with high levels of four biomarkers in the blood may be more likely to develop a stroke than people with low levels of the biomarkers, according to a study published in the Aug.
Pre-stroke risk factors influence long-term future stroke, dementia risk
If you had heart disease risk factors, such as high blood pressure, before your first stoke, your risk of suffering subsequent strokes and dementia long after your initial stroke may be higher.
Intervention methods of stroke need to focus on prevention for blacks to reduce stroke mortality
Blacks are four times more likely than their white counterparts to die from stroke at age 45.
Study shows area undamaged by stroke remains so, regardless of time stroke is left untreated
A study led by Achala Vagal, M.D., associate professor at the University of Cincinnati College of Medicine and a UC Health radiologist, looked at a group of untreated acute stroke patients and found that there was no evidence of time dependence on damage outcomes for the penumbra, or tissue that is at risk of progressing to dead tissue but is still salvageable if blood flow is returned in a stroke, but rather an association with collateral flow -- or rerouting of blood through clear vessels.
Immediate aspirin after mini-stroke substantially reduces risk of major stroke
Using aspirin urgently could substantially reduce the risk of major strokes in patients who have minor 'warning' events.
SAGE launches the European Stroke Journal with the European Stroke Organisation
SAGE, a world leading independent and academic publisher, is delighted to announce the launch of the European Stroke Journal, the flagship journal of the European Stroke Organisation.
The S-stroke or I-stroke?
The year 2016 is an Olympic year. Developments in high-performance swimwear for swimming continue to advance, along with other areas of scientific research.

Related Stroke Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Climate Crisis
There's no greater threat to humanity than climate change. What can we do to stop the worst consequences? This hour, TED speakers explore how we can save our planet and whether we can do it in time. Guests include climate activist Greta Thunberg, chemical engineer Jennifer Wilcox, research scientist Sean Davis, food innovator Bruce Friedrich, and psychologist Per Espen Stoknes.
Now Playing: Science for the People

#527 Honey I CRISPR'd the Kids
This week we're coming to you from Awesome Con in Washington, D.C. There, host Bethany Brookshire led a panel of three amazing guests to talk about the promise and perils of CRISPR, and what happens now that CRISPR babies have (maybe?) been born. Featuring science writer Tina Saey, molecular biologist Anne Simon, and bioethicist Alan Regenberg. A Nobel Prize winner argues banning CRISPR babies won’t work Geneticists push for a 5-year global ban on gene-edited babies A CRISPR spin-off causes unintended typos in DNA News of the first gene-edited babies ignited a firestorm The researcher who created CRISPR twins defends...