Nav: Home

New technology standard could shape the future of electronics design

January 24, 2018

Scientists at the University of Southampton have discovered a way of enhancing the capabilities of an emerging nanotechnology that could open the door to a new generation of electronics.

In a study published in the journal Scientific Reports, researchers show how they have pushed the memristor - a simpler and smaller alternative to the transistor, with the capability of altering its resistance and storing multiple memory states - to a new level of performance after experimenting with its component materials.

Traditionally, the processing of data in electronics has relied on integrated circuits (chips) featuring vast numbers of transistors - microscopic switches that control the flow of electrical current by turning it on or off.

Transistors have got smaller and smaller in order to meet the increasing demands of technology, but are now reaching their physical limit, with - for example - the processing chips that power smartphones containing an average of five billion transistors.

Memristors could hold the key to a new era in electronics, being both smaller and simpler in form than transistors, low-energy, and with the ability to retain data by 'remembering' the amount of charge that has passed through them - potentially resulting in computers that switch on and off instantly and never forget.

The University of Southampton team has demonstrated a new memristor technology that can store up to 128 discernible memory states per switch, almost four times more than previously reported.

In the study, they describe how they reached this level of performance by evaluating several configurations of functional oxide materials - the core component that gives the memristor its ability to alter its resistance.

Themis Prodromakis, Professor of Nanotechnology and EPSRC Fellow at the University of Southampton, said: "This is a really exciting discovery, with potentially enormous implications for modern electronics. By 2020 there are expected to be more than 200 billion interconnected devices within the Internet of Things framework - these will generate an incredible amount of data that will need processing.

"Memristors are a key enabling technology for next-generation chips, which need to be highly reconfigurable yet affordable, scalable and energy-efficient.

"We are thrilled to be working with world-leading industry, bringing innovations into new electronic systems that require bespoke customisation. Such examples include systems that are employed in inaccessible environments; for example, inside the human body, space or other remote or harsh locations.

"At the same time this technology is ideal for developing novel hardware that can learn and adapt autonomously, much like the human brain."
-end-
The research was supported by the Engineering and Physical Sciences Research Council (EPSRC) and the Royal Society.

Editors' notes

1) The paper, Multibit memory operation of metal-oxide bi-layer memristors, is published in Scientific Reports. DOI: 10.1038/s41598-017-17785-1

2) The University of Southampton drives original thinking, turns knowledge into action and impact, and creates solutions to the world's challenges. We are among the top one per cent of institutions globally. Our academics are leaders in their fields, forging links with high-profile international businesses and organisations, and inspiring a 24,000-strong community of exceptional students, from over 135 countries worldwide. Through our high-quality education, the University helps students on a journey of discovery to realise their potential and join our global network of over 200,000 alumni. http://www.southampton.ac.uk

For further information contact:

Andrew White, Media Relations, University of Southampton, Tel: 023 8059 2128, email: a.j.white@southampton.ac.uk

University of Southampton

Related Nanotechnology Articles:

MEDLINE indexes Pharmaceutical Nanotechnology
Pharmaceutical Nanotechnology, an important journal published by Benthm Science, is accepted to be included in MEDLINE.
Nanotechnology and nanopore sequencing
DNA is the hereditary material in our cells and contains the instructions for them to live, behave, grow, and develop.
New research helps to meet the challenges of nanotechnology
Scientists at Swansea University show nanoscale modifications to the edge region of nanocontacts to nanowires can be used to engineer the electrical function of the interfaces.
Nanotechnology: Lighting up ultrathin films
Based on a study of the optical properties of novel ultrathin semiconductors, researchers of Ludwig-Maximilians-Universitaet in Munich have developed a method for rapid and efficient characterization of these materials.
Going green with nanotechnology
Reducing the environmental impact of organic solar cell production, building more efficient energy storage: W├╝rzburg-based research institutes have provided for progress in the Bavarian project association UMWELTnanoTECH.
New nanotechnology detects biomarkers of cancer
Researchers at Wake Forest Baptist Medical Center have developed a new technology to detect disease biomarkers in the form of nucleic acids, the building blocks of all living organisms.
Nanotechnology inspires next-generation dental materials
Have a cavity? Ask your dentist about filling it with a mixture of nanoparticles including silica and zirconia.
Using nanotechnology to fight cancer
Northwestern University, a leader in cancer nanotechnology research, has received a five-year, $11.7 million grant from the National Cancer Institute to use nanotechnology to develop next-generation cancer treatments.
Crystallizing the DNA nanotechnology dream
For the last 20 years, scientists have tried to design large DNA crystals with precisely prescribed depth and complex features -- a design quest just fulfilled by a team at Harvard's Wyss Institute for Biologically Inspired Engineering.
Nanotechnology imaging breakthrough
A team led by Carnegie researcher Wenge Yang has made a major breakthrough in measuring the structure of nanomaterials under extremely high pressures.

Related Nanotechnology Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".