Nav: Home

Prediction of titanic nitride proved unsinkable

January 24, 2018

Washington, DC--A team of experimental and computational scientists led by Carnegie's Tim Strobel and Venkata Bhadram have synthesized a long sought-after form of titanium nitride, Ti3N4, which has promising mechanical and optoelectronic properties.

Standard titanium nitride (TiN), with a one-to-one ratio of titanium and nitrogen, exhibits a crystal structure resembling that of table salt--sodium chloride, or NaCl. It is a metal with abrasive properties and thus used for tool coatings and manufacturing of electrodes. Titanium nitride with a three-to-four ratio of titanium and nitrogen, called titanic nitride, has remained elusive, despite previous theoretical predictions of its existence and the fact that nitrides with this ratio have been identified for the other members of titanium's group on the period table, including zirconium.

Strobel and Bhadram's team--Carnegie's Hanyu Liu , and Rostislav Hrubiak, as well as Vitali B. Prakapenka of the University of Chicago, Enshi Xu and Tianshu Li of George Washington University, and Stephan Lany of the National Renewable Energy Laboratory --undertook the challenge. Their work is published and highlighted as an Editor's Suggestion in Physical Review Materials.

They created Ti3N4 in a cubic crystalline phase using a laser-heated diamond anvil cell, which was brought to about 740,000 times normal atmospheric pressure (74 gigapascals) and about 2,200 degrees Celsius (2,500 kelvin). Advanced x-ray and spectroscopic tools confirmed the crystalline structure the team had created under these conditions, and theoretical model-based calculations allowed them to predict the thermodynamic nature and physical properties of Ti3N4.

Table-salt-like TiN is metallic, which means it can conduct a flow of electrons that makes up a current. But cubic Ti3N4 is a semiconductor, which means that it can have its electrical conductivity turned on and off. This possibility is tremendously useful in electronic devices. Titanium-based semiconductors are particularly popular as catalysts for solar water-splitting reactions to produce hydrogen, a clean renewable-energy source.

This ability to switch conductivity on and off is possible because some of a semiconductor's electrons can move from lower-energy insulating states to higher-energy conducting states when subjected to an input of energy. The energy required to initiate this leap is called a band gap. The band gap for cubic Ti3N4 is larger than expected based on previous model predictions. Furthermore, like metallic TiN, Ti3N4 is expected to exhibit excellent mechanical and wear resistance properties.

"To our knowledge this is the first experimental report on semiconducting titanium nitride" said lead author Bhadram. "We believe that this work will stimulate further experimental and theoretical efforts to design new ways to scale up the synthesis of Ti3N4 at ambient pressure."
-end-
This work was supported by Energy Frontier Research in Extreme Environments (EFree) Center, an Energy Frontier Research Center (EFRC) funded by the U.S. Department of Energy, Office of Science.

Portions of this work were performed at GeoSoilEnviroCARS and HPCAT, Advanced Photon Source, Argonne National Laboratory. GeoSoilEnviroCARS is supported by the National Science Foundation-Earth Sciences and Department of Energy-GeoSciences.

The Carnegie Institution for Science (carnegiescience.edu) is a private, nonprofit organization headquartered in Washington, D.C., with six research departments throughout the U.S. Since its founding in 1902, the Carnegie Institution has been a pioneering force in basic scientific research. Carnegie scientists are leaders in plant biology, developmental biology, astronomy, materials science, global ecology, and Earth and planetary science.

Carnegie Institution for Science

Related Titanium Articles:

Cheap, energy-efficient and clean reaction to make chemical feedstock
Combining experimental and computer chemistry, scientists find the conditions to break carbon-hydrogen bonds at low temperature with cheap titanium in place of rare metals.
New photocatalyst speeds up the conversion of carbon dioxide into chemical resources
A new oxygen-deficient titanium dioxide prepared with Mg reduction method drastically improves the carbon dioxide conversion efficiency up to three times the efficiency of existing photocatalyst.
Coatings for nuclear fuel preventing explosions in reactors, developed at TPU
Physicists from Tomsk Polytechnic University are creating protective titanium nitride-based coatings for shells of fuel elements (fuel rods) of nuclear reactors.
Shedding light on the absorption of light by titanium dioxide
EPFL scientists have uncovered the hidden properties of titanium dioxide, one of the most promising materials for light-conversion technology.
New ultrafast flexible and transparent memory devices could herald new era of electronics
An innovative new technique to produce the quickest, smallest, highest-capacity memories for flexible and transparent applications could pave the way for a future golden age of electronics.
Switching oxygen on and off
At the Vienna University of Technology, it has now been possible to selectively switch individual oxygen molecules sitting on a titanium oxide surface between a non-reactive to a reactive state using a special force microscope.
Food additive found in candy, gum could alter digestive cell structure and function
The ability of small intestine cells to absorb nutrients and act as a barrier to pathogens is 'significantly decreased' after chronic exposure to nanoparticles of titanium dioxide, a common food additive found in everything from chewing gum to bread, according to research from Binghamton University, State University of New York.
Blood-repellent materials: A new approach to medical implants
Medical implants like stents, catheters and tubing introduce risk for blood clotting and infection -- a perpetual problem for many patients.
Sheffield 'FAST-forge' process set to change UK's high value manufacturing industry
Researchers have developed a new concept in high value manufacturing which could lead to a more cost effective and sustainable production process in the aerospace industry.
Titanium + gold = new gold standard for artificial joints
Titanium is the leading material for artificial knee and hip joints because it's strong, wear-resistant and nontoxic, but an unexpected discovery by Rice University physicists shows that the gold standard for artificial joints can be improved with the addition of some actual gold.

Related Titanium Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".