Nav: Home

MMV malaria box phenotyped against plasmodium and toxoplasma

January 24, 2018

A Singapore-India collaborative research project between the Singapore University of Technology & Design (SUTD) and CSIR-National Chemical Laboratories (NCL) completed phenotypic screening of a large collection of potent chemical inhibitors (known as MMV Malaria Box), against pathogenic parasites Toxoplasma gondii and Plasmodium falciparum, causative agents of human toxoplasmosis and malaria. This knowledge opens up new avenues to study unique stages of infectious cycle that are affected by inhibitor classes towards anti-parasitic drug development.

Plasmodium parasites cause malaria and morbidly impact the economies of the developing world. Although, asymptomatic and not as deadly as malaria, toxoplasmosis can lead to serious health concerns in pregnant women (and in immuno-compromised individuals). Towards reducing the global burden of malaria and other neglected diseases, millions of compounds were screened, prioritized and assembled by the WHO-supported Medicines for Malaria Venture (MMV) as the MMV 'Malaria Box' collection of 400 chemically diverse small molecules. However, how these inhibitors kill the parasites remain largely unknown. Through complementary and comparative screening, the SUTD-NCL team has now discovered and segregated the MMV box library based on the life-stage events affected by individual inhibitors.

The team used complementary phenotypic screens on P. falciparum and T. gondii to identify phenotype-specific hits based on:
    a) Inhibition of overall parasite growth,

    b) Apicoplast segregation, and

    c) Egress or host invasion and cross-validated between the two related, yet distinct parasitic forms.

They identified 24 molecules with nanomolar potency against both parasites, 30 molecules causing delayed death (in toxoplasma), out of which three interfere with apicoplast segregation, an essential process for the formation of new daughter cells. They also identified 26 molecules that specifically inhibit parasite release or host cell invasion of P. falciparum. Five of their 'hits' were also active against the release of T. gondii tachyzoites from mammalian cells, highlighting pathways that can be exploited in both parasites using the same class of molecules.

Principal investigator Assistant Professor Rajesh Chandramohanadas from SUTD said: "MMV malaria Box represents an excellent starting point for anti-parasitic drug development due to chemical diversity, potency and open access. However, more information is needed on cellular pathways and targets affected by these inhibitors before pharmacological optimizations can be pursued. Having completed the phenotypic characterization and stage-specificity studies, we have now shortlisted a handful of excellent inhibitors for detailed mode-of-action and medicinal chemistry studies towards novel drug development."

"Egress and invasion are significantly similar between malaria and toxoplasma parasites. Therefore, identification of molecules that affect both parasites during their release from infected host cells not only highlights robustness of the complementary screening approach we adopted, but also conserved drug targets for pan anti-parasitic drug development," Dr Dhanasekaran Shanmugam from NCL added.
-end-
This research appeared in mSphere, published by the American Society of Microbiology and its first authors are graduate students Mr Subramanian Gowtham (SUTD) and Ms Meenakshi Belekar (NCL). Other senior investigators in the team include Dr Srinivasa Reddy (NCL), Professor Kevin Tan (National University of Singapore), and Professor Peter Preiser (Nanyang Technological University).

This work was jointly funded by the Agency for Science, Technology and Research (A*Star), Singapore- and the Department of Science and Technology (DST), India under the Singapore-India Joint Grant.

Singapore University of Technology and Design

Related Malaria Articles:

Could there be a 'social vaccine' for malaria?
Malaria is a global killer and a world health concern.
Transgenic plants against malaria
Scientists have discovered a gene that allows to double the production of artemisinin in the Artemisia annua plant.
Fighting malaria through metabolism
EPFL scientists have fully modeled the metabolism of the deadliest malaria parasite.
Should we commit to eradicate malaria worldwide?
Should we commit to eradicate malaria worldwide, asks a debate article published by The BMJ today?
Investigational malaria vaccine shows considerable protection in adults in malaria season
An investigational malaria vaccine given intravenously was well-tolerated and protected a significant proportion of healthy adults against infection with Plasmodium falciparum malaria -- the deadliest form of the disease -- for the duration of the malaria season, according to new findings published in the Feb.
Why malaria mosquitoes like people with malaria
Malaria mosquitoes prefer to feed -- and feed more -- on blood from people infected with malaria.
Malaria superbugs threaten global malaria control
A lineage of multidrug resistant P. falciparum malaria superbugs has widely spread and is now established in parts of Thailand, Laos and Cambodia, causing high treatment failure rates for the main falciparum malaria medicines, artemisinin combination therapies (ACTs), according to a study published today in The Lancet Infectious Diseases.
Considering cattle could help eliminate malaria in India
The goal of eliminating malaria in countries like India could be more achievable if mosquito-control efforts take into account the relationship between mosquitoes and cattle, according to an international team of researchers.
Seasonal malaria chemoprevention in Senegalese children lowers overall malaria burden
Giving preventive antimalarial drugs to children up to age 10 during active malaria season reduced the cases of malaria in that age group and lowered the malaria incidence in adults, according to a randomized trial carried out in Senegal and published in PLOS Medicine by researchers from the Université Cheikh Anta Diop, Senegal, the London School of Hygiene & Tropical Medicine, UK, and other collaborators.
How malaria fools our immune system
OIST researchers reconstruct the 3-D structure of a malaria protein in combination with human antibodies.

Related Malaria Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Jumpstarting Creativity
Our greatest breakthroughs and triumphs have one thing in common: creativity. But how do you ignite it? And how do you rekindle it? This hour, TED speakers explore ideas on jumpstarting creativity. Guests include economist Tim Harford, producer Helen Marriage, artificial intelligence researcher Steve Engels, and behavioral scientist Marily Oppezzo.
Now Playing: Science for the People

#524 The Human Network
What does a network of humans look like and how does it work? How does information spread? How do decisions and opinions spread? What gets distorted as it moves through the network and why? This week we dig into the ins and outs of human networks with Matthew Jackson, Professor of Economics at Stanford University and author of the book "The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviours".