Study provides first systematic survey of metabolites across tumor types

January 24, 2018

In an advance reminiscent of the earliest maps of genomic mutations in cancer, investigators at Dana-Farber Cancer Institute and Memorial Sloan Kettering Cancer Center have completed the first systematic survey of the products of biochemical reactions within cancer and their relation to the progress of the disease. The products, known as metabolites, arise from the myriad chemical reactions that keep cells alive and functioning.

Published online today by the journal Cell Systems, the survey results provide scientists around the world with a curated dataset with which to track metabolic changes in cancer cells and potentially uncover vulnerabilities that can be targeted by novel therapies. A website accompanying the new report enables researchers to study patterns of variation in metabolite levels across multiple types of cancers, explore how these patterns change as cancers progress, and look for connections between metabolites and drug susceptibility.

"Scientists have known for more than 100 years that metabolic changes are important in cancer, but over the last three decades the field has been dominated by discoveries of the genetic and genomic changes that occur in cancer cells," says the study's senior author, Chris Sander, PhD, of Dana-Farber. "In the last five to 10 years, there has been a resurgence of cancer metabolism research - with a focus on the differences in the metabolic functioning of cancer cells vs. normal cells - and in using that knowledge as the basis for new therapies. The drug methotrexate and, more recently, drugs that inhibit enzymes such as glutaminase or isocitrate dehydrogenase, are excellent examples. We think there is more to come."

The revival has been propelled in part by technological advances that enable scientists to identify large numbers of the metabolites present in normal and cancerous cells - much as advances 20 years ago have made it possible to canvas cells for hundreds or thousands of genomic irregularities.

Metabolism is the catchall term for processes that drive every aspect of cell life - consuming energy, growing, dividing, and performing specific functions within the body. It is as basic to the life of normal cells as to cancer cells, although their metabolisms can differ in a variety of ways. Much of cell metabolism involves chemical reactions sparked by enzymes. The products of these reactions are metabolites, which themselves can interact to form other metabolites. The assortment of metabolites within a cell is referred to as its metabolome.

For the current study, researchers built a broad dataset of cancer cell metabolites by merging data from 11 studies involving more than 900 tumor tissue samples and seven different cancer types. Their analysis of the data showed that the composition of metabolites in normal tissue is often far different from that in corresponding types of tumor tissue. Across many tumor types, however, the investigators found that several metabolites showed consistent increases or decreases in abundance compared to normal tissue.

The researchers also collected data on the stage and grade of each tumor (measures of tumor progression and aggressiveness). By linking this data to the metabolite data, they found that a small number of metabolites were associated with aggressive tumors in many cancer types. One such metabolite, kynurenine, which was elevated in aggressive tumors regardless of where they originated, is known to help cells evade an attack from the immune system. "Our findings offer the most comprehensive look to date at the differences in metabolic programming between normal and cancer cells, and across various kinds of cancer," says Ed Reznik, PhD, of Memorial Sloan Kettering, the co-lead author of the study with Augustin Luna, PhD, of Dana-Farber. "We expect the metabolomics dataset will be an important tool as the field of cancer metabolism moves forward."
-end-
Co-authors of the study are Bülent Arman Aksoy, PhD, of Icahn School of Medicine; Eric Minwei Liu, MS, MPharm, of Weill Cornell Medical College; Konnor La, MS, of Memorial Sloan Kettering and Rockefeller University; Irina Ostrovnaya, PhD, and A. Ari Hakimi, MD, of Memorial Sloan Kettering; and Chad J. Creighton, PhD, of Baylor College of Medicine.

The work was supported by a Ruth L. Kirschstein National Research Service Award; the National Institute of General Medical Sciences; the National Institute of Health (grant CA125123); and the National Cancer Institute (grant P30-CA008748).

Dana-Farber Cancer Institute

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.