Nav: Home

How bacteria build hyper-efficient photosynthesis machines

January 24, 2019

Researchers facing a future with a larger population and more uncertain climate are looking for ways to improve crop yields, and they're looking to photosynthetic bacteria for engineering solutions.

In the Journal of Biological Chemistry, a Canadian research team reports on how cyanobacteria finesse one of the most wasteful steps in photosynthesis. The study investigated the assembly of carboxysomes in which the bacteria concentrate carbon dioxide, boosting the efficiency of a critical enzyme called RubisCO.

"Essentially everything we eat starts with RubisCO," said Matthew Kimber, a professor at the University of Guelph in Ontario, Canada, and senior author on the recent paper.

The enzyme, which is made of 16 protein subunits, is essential for photosynthesis. Using energy captured from light, it incorporates carbon dioxide into organic molecules from which the plant then builds new sugar. Unfortunately, it's not terribly efficient. Or, from Kimber's point of view, "RubisCO has a really thankless task."

The enzyme evolved in an ancient world where carbon dioxide was common and oxygen was rare. As a result, it isn't very picky in discriminating between the two gases. Now that the atmospheric tables have turned, RubisCO often accidentally captures oxygen, generating a useless compound that the plant then has to invest extra energy to recycle.

Compared with plants, cyanobacteria make very few such mistakes. This is because bacteria collect their RubisCO is into dense bodies known as carboxysomes. The bacteria pump bicarbonate (simply hydrated CO2) into the cell; once it gets into the carboxysome, enzymes convert the bicarbonate into carbon dioxide. Because the carbon dioxide can't escape through the protein shell surrounding the carboxysome, it builds up to high concentrations, helping RubisCO avoid costly mistakes.

Kimber's interest in carboxysomes is mainly in understanding the logic of their organization. "They're actually phenomenally intricate machines," he explains. "The cyanobacterium makes eleven or so normal-looking proteins, and these somehow organize themselves into this self-regulating mega-complex that can exceed the size of a small cell."

One of carboxysomes' most impressive tricks is self-assembly, which Kimber's lab set out to understand. They looked at a protein called CcmM, which corrals RubisCO enzymes into new carboxysomes. They knew that part of CcmM looks a lot like a subunit of RubisCO--so much so, in fact, that researchers suspect that ancient cyanobacteria originally created CcmM by duplicating a RubisCO gene. Most scientists in the field believed that CcmM binds to the enzyme by usurping that subunit's spot. But when Kimber's lab took a detailed look at CcmM, using biophysics techniques to observe the protein's structure and binding, the results showed that received wisdom was wrong. True, CcmM was similar in shape to the small RubisCO subunit. But the complexes it formed still included all 8 small subunits, meaning that instead of stealing a spot from a RubisCO subunit, CcmM had to be binding somewhere else altogether.

"This is very odd from a biological perspective, because if CcmM arose by duplicating the small subunit, it almost certainly originally bound in the same way," Kimber said. "At some point, it must have evolved to prefer a new binding site."

The researchers also found that a linker between binding domains in CcmM is short enough that "instead of wrapping around RubisCO, it tethers (individual enzymes) together like beads on a string. With several such linkers binding each RubisCO at random, it crosslinks everything into this big glob; you wrap a shell around it, and this then becomes the carboxysome."

Scientists at a different university reported last fall that they had succeeded in making tobacco plants with a stripped-down carboxysome in their chloroplasts. Those plants didn't grow especially well, and the authors concluded that they had taken away too many components of the carboxysome; although it could be built in the chloroplast, it was a drag on the plants instead of a help. Having a better understanding of how proteins like CcmM contribute to carboxysome construction and function could help bioengineers leverage carboxysome efficiency in the next generation of engineered plants.
-end-
Doi: 10.1074/jbc.RA118.006330

This research was funded by Canada's Natural Sciences and Engineering Research Council. Other authors include Patrick Ryan, Taylor Forrester, Charles Wroblewski, Tristan Kenney, from the University of Guelph, and Elena Kitova and John Klassen from the University of Alberta.

About the Journal of Biological Chemistry

JBC is a weekly peer-reviewed scientific journal that publishes research "motivated by biology, enabled by chemistry" across all areas of biochemistry and molecular biology. The read the latest research in JBC, visit http://www.jbc.org/.

About the American Society for Biochemistry and Molecular Biology

The ASBMB is a nonprofit scientific and educational organization with more than 12,000 members worldwide. Most members teach and conduct research at colleges and universities. Others conduct research in various government laboratories, at nonprofit research institutions and in industry. The Society's student members attend undergraduate or graduate institutions. For more information about ASBMB, visit http://www.asbmb.org.

American Society for Biochemistry and Molecular Biology

Related Photosynthesis Articles:

Showtime for photosynthesis
Using a unique combination of nanoscale imaging and chemical analysis, an international team of researchers has revealed a key step in the molecular mechanism behind the water splitting reaction of photosynthesis, a finding that could help inform the design of renewable energy technology.
Photosynthesis in a droplet
Researchers develop an artificial chloroplast.
Even bacteria need their space: Squished cells may shut down photosynthesis
Introverts take heart: When cells, like some people, get too squished, they can go into defense mode, even shutting down photosynthesis.
Marine cyanobacteria do not survive solely on photosynthesis
The University of Cordoba published a study in a journal from the Nature group that supports the idea that marine cyanobacteria also incorporate organic compounds from the environment.
Photosynthesis -- living laboratories
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists Marcel Dann and Dario Leister have demonstrated for the first time that cyanobacteria and plants employ similar mechanisms and key proteins to regulate cyclic electron flow during photosynthesis.
Photosynthesis seen in a new light by rapid X-ray pulses
In a new study, led by Petra Fromme and Nadia Zatsepin at the Biodesign Center for Applied Structural Discovery, the School of Molecular Sciences and the Department of Physics at ASU, researchers investigated the structure of Photosystem I (PSI) with ultrashort X-ray pulses at the European X-ray Free Electron Laser (EuXFEL), located in Hamburg, Germany.
Photosynthesis olympics: can the best wheat varieties be even better?
Scientists have put elite wheat varieties through a sort of 'Photosynthesis Olympics' to find which varieties have the best performing photosynthesis.
Strange bacteria hint at ancient origin of photosynthesis
Structures inside rare bacteria are similar to those that power photosynthesis in plants today, suggesting the process is older than assumed.
Just how much does enhancing photosynthesis improve crop yield?
In the next two decades, crop yields need to increase dramatically to feed the growing global population.
Algal library lends insights into genes for photosynthesis
To identify genes involved in photosynthesis, researchers built a library containing thousands of single-celled algae, each with a different gene mutation.
More Photosynthesis News and Photosynthesis Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Meditations on Loneliness
Original broadcast date: April 24, 2020. We're a social species now living in isolation. But loneliness was a problem well before this era of social distancing. This hour, TED speakers explore how we can live and make peace with loneliness. Guests on the show include author and illustrator Jonny Sun, psychologist Susan Pinker, architect Grace Kim, and writer Suleika Jaouad.
Now Playing: Science for the People

#565 The Great Wide Indoors
We're all spending a bit more time indoors this summer than we probably figured. But did you ever stop to think about why the places we live and work as designed the way they are? And how they could be designed better? We're talking with Emily Anthes about her new book "The Great Indoors: The Surprising Science of how Buildings Shape our Behavior, Health and Happiness".
Now Playing: Radiolab

The Third. A TED Talk.
Jad gives a TED talk about his life as a journalist and how Radiolab has evolved over the years. Here's how TED described it:How do you end a story? Host of Radiolab Jad Abumrad tells how his search for an answer led him home to the mountains of Tennessee, where he met an unexpected teacher: Dolly Parton.Jad Nicholas Abumrad is a Lebanese-American radio host, composer and producer. He is the founder of the syndicated public radio program Radiolab, which is broadcast on over 600 radio stations nationwide and is downloaded more than 120 million times a year as a podcast. He also created More Perfect, a podcast that tells the stories behind the Supreme Court's most famous decisions. And most recently, Dolly Parton's America, a nine-episode podcast exploring the life and times of the iconic country music star. Abumrad has received three Peabody Awards and was named a MacArthur Fellow in 2011.