Nav: Home

Keeping chromosomes in check: a new role for heterochromatin

January 24, 2019

Osaka, Japan - Although many people are aware that chromosomal damage and shortening contribute to the aging process, understanding how chromosomal defects occur is about more than just finding a way to turn back the clock. Large changes in the structure of chromosomes, known as gross chromosomal rearrangements, can result in cell death or genetic diseases such as cancer.

Heterochromatin is a more densely-coiled version of chromatin, the mass of DNA and proteins that forms chromosomes. A unique region of a chromosome called the centromere is vital for correct segregation of chromosomes during cell division. While researchers have long known that centromeres are composed of heterochromatin, why the centromere is so tightly packed and how this helps stabilize the region has remained elusive--until now.

In a recent paper published in Communications Biology, a research team led by Osaka University has uncovered the role of heterochromatin in maintaining chromosomal integrity.

Centromeric regions contain a large number of short, repeated DNA sequences. These repeats make the centromere especially susceptible to breakage and rearrangements, often causing one entire arm of a chromosome to be lost while the other arm is duplicated, forming structures called isochromosomes. But the team from Osaka University found that a specific feature of heterochromatin, histone H3 lysine 9 (H3K9) methylation, suppresses gross chromosomal rearrangements caused by centromere repeats.

"Deletion of Clr4, the protein responsible for H3K9 methylation in model organism Schizosaccharomyces pombe, caused an increase in the formation of isochromosomes with breakpoints located in the centromere repeats," says lead author Akiko Okita, suggesting that methylation helps prevent rearrangements.

However, further investigation revealed that the mechanism was even more intricate than first thought.

Heterochromatin silences the action of RNA polymerase II, an enzyme responsible for copying DNA into RNA transcripts. Unexpectedly, complete silencing of RNA transcription did not seem to be necessary to suppress gross chromosomal rearrangements. Transcription factor Tfs1/TFIIS is needed to restart RNA polymerase II if it backtracks along the already-copied DNA sequence. Intriguingly, the researchers found that deletion of Tfs1/TFIIS was sufficient to bypass the need for Clr4 in the suppression of gross chromosomal rearrangements, and that RNA transcription levels were largely unaffected by the Tfs1/TFIIS deletion.

"The results showed that repression of Tfs1/TFIIS-dependent 'persistent' transcription of centromere repeats is the key role of heterochromatin in the suppression of gross chromosomal rearrangements," explains corresponding author Takuro Nakagawa. Essentially, heterochromatin stops the repeats from being copied and used in the formation of gross chromosomal rearrangements.

"We predict that our findings will help develop methods of securing genome integrity by manipulating chromatin status rather than by changing the DNA sequence," says Dr Nakagawa. "This would be a huge accomplishment because the ability to suppress gross chromosomal rearrangements is integral to the prevention of diseases arising from chromosomal instability."
The article, "Heterochromatin suppresses gross chromosomal rearrangements at centromeres by repressing Tfs1/TFIIS-dependent transcription," was published in Communications Biology at DOI:

About Osaka University

Osaka University was founded in 1931 as one of the seven imperial universities of Japan and now has expanded to one of Japan's leading comprehensive universities. The University has now embarked on open research revolution from a position as Japan's most innovative university and among the most innovative institutions in the world according to Reuters 2015 Top 100 Innovative Universities and the Nature Index Innovation 2017. The university's ability to innovate from the stage of fundamental research through the creation of useful technology with economic impact stems from its broad disciplinary spectrum.


Osaka University

Related Dna Articles:

Zigzag DNA
How the cell organizes DNA into tightly packed chromosomes. Nature publication by Delft University of Technology and EMBL Heidelberg.
Scientists now know what DNA's chaperone looks like
Researchers have discovered the structure of the FACT protein -- a mysterious protein central to the functioning of DNA.
DNA is like everything else: it's not what you have, but how you use it
A new paradigm for reading out genetic information in DNA is described by Dr.
A new spin on DNA
For decades, researchers have chased ways to study biological machines.
From face to DNA: New method aims to improve match between DNA sample and face database
Predicting what someone's face looks like based on a DNA sample remains a hard nut to crack for science.
Self-healing DNA nanostructures
DNA assembled into nanostructures such as tubes and origami-inspired shapes could someday find applications ranging from DNA computers to nanomedicine.
DNA design that anyone can do
Researchers at MIT and Arizona State University have designed a computer program that allows users to translate any free-form drawing into a two-dimensional, nanoscale structure made of DNA.
DNA find
A Queensland University of Technology-led collaboration with University of Adelaide reveals that Australia's pint-sized banded hare-wallaby is the closest living relative of the giant short-faced kangaroos which roamed the continent for millions of years, but died out about 40,000 years ago.
DNA structure impacts rate and accuracy of DNA synthesis
DNA sequences with the potential to form unusual conformations, which are frequently associated with cancer and neurological diseases, can in fact slow down or speed up the DNA synthesis process and cause more or fewer sequencing errors.
Changes in mitochondrial DNA control how nuclear DNA mutations are expressed in cardiomyopathy
Differences in the DNA within the mitochondria, the energy-producing structures within cells, can determine the severity and progression of heart disease caused by a nuclear DNA mutation.
More DNA News and DNA Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Our Relationship With Water
We need water to live. But with rising seas and so many lacking clean water – water is in crisis and so are we. This hour, TED speakers explore ideas around restoring our relationship with water. Guests on the show include legal scholar Kelsey Leonard, artist LaToya Ruby Frazier, and community organizer Colette Pichon Battle.
Now Playing: Science for the People

#569 Facing Fear
What do you fear? I mean really fear? Well, ok, maybe right now that's tough. We're living in a new age and definition of fear. But what do we do about it? Eva Holland has faced her fears, including trauma and phobia. She lived to tell the tale and write a book: "Nerve: Adventures in the Science of Fear".
Now Playing: Radiolab

First things first: our very own Latif Nasser has an exciting new show on Netflix. He talks to Jad about the hidden forces of the world that connect us all. Then, with an eye on the upcoming election, we take a look back: at two pieces from More Perfect Season 3 about Constitutional amendments that determine who gets to vote. Former Radiolab producer Julia Longoria takes us to Washington, D.C. The capital is at the heart of our democracy, but it's not a state, and it wasn't until the 23rd Amendment that its people got the right to vote for president. But that still left DC without full representation in Congress; D.C. sends a "non-voting delegate" to the House. Julia profiles that delegate, Congresswoman Eleanor Holmes Norton, and her unique approach to fighting for power in a virtually powerless role. Second, Radiolab producer Sarah Qari looks at a current fight to lower the US voting age to 16 that harkens back to the fight for the 26th Amendment in the 1960s. Eighteen-year-olds at the time argued that if they were old enough to be drafted to fight in the War, they were old enough to have a voice in our democracy. But what about today, when even younger Americans are finding themselves at the center of national political debates? Does it mean we should lower the voting age even further? This episode was reported and produced by Julia Longoria and Sarah Qari. Check out Latif Nasser's new Netflix show Connected here. Support Radiolab today at