Nav: Home

Research shows what it takes to be a giant shark

January 24, 2019

In a paper published by Evolution, research led by Swansea University's Dr Catalina Pimiento and co-authored by an international team of scientists from the UK, Europe and the USA examined the biological traits of all sharks and rays before running a series of evolutionary models to seek how gigantism evolved over time.

The results showed that for a shark to be giant, it would need to first evolve adaptations that enhance feeding such as the ability to control - at least to some degree - their own body temperature or become a filter feeder.

One of the most famous giant sharks, Megalodon - the topic of 2018 Hollywood film The Meg - was an active predator that could measure up to 18 metres in length and became extinct around two million years ago.

Meanwhile, the whale shark - which is still around today - can also reach 18 metres but isn't an active predator. Instead, it is a filter feeder and eats tiny plankton from the sea.

These two subjects formed key parts of the research, which centred on the tree of life for sharks, where the authors mapped characteristics relating to body size, like their thermo-regulatory capacity, feeding mechanism and diet.

Researchers then found that sharks could become giants by following one of two possible evolutionary pathways; the mesothermic pathway, which consists of evolving the ability to self-control the temperature of their most important organs - or the filter-feeding pathway, which consists of evolving the ability to feed on microscopic plankton.

The mesothermic adaptation allows sharks to live in different types of habitats - including cold waters - and also hunt more effectively. The filter-feeding adaptation allows sharks to eat the most abundant food in the ocean - plankton.

However, there are risks involved for any shark following the evolutionary pathways that lead to gigantism. The mesothermic species need to consume big prey to maintain their high energetic demands, but when these prey are scarce, giant sharks are more susceptible to extinction. The scarcity of large prey in times of rapid climatic change was the most likely cause of the extinction of Megalodon.

While the filter feeders have shown more resilience, they are at risk of eating large volumes of toxic micro plastics that now can be found in the world's oceans - thus threatening their extinction.

Dr Catalina Pimiento, lead researcher and Postdoctoral fellow at Swansea University, said:

"Sharks provide an ideal case study to understand the evolutionary pathways leading to gigantism in the oceans because they display contrasting lifestyles and adaptations, and because they have an evolutionary history of at least 250 million years."
-end-
In addition to Dr Catalina Pimiento, who is also affiliated with the Naturkunde Museum in Berlin and the Smithsonian Tropical Research Institute, other authors include Juan L. Cantalapiedra, Universidad de Alcala; Kenshu Shimada, DePaul University; Daniel J. Field, Cambridge University; and Jeroen B. Smaers, Stony Brook University.

Swansea University

Related Sharks Articles:

The private lives of sharks
White sharks are top predators in the marine environment, but unlike their terrestrial counterparts, very little is known about their predatory activity underwater, with current knowledge limited to surface predation events.
Basking sharks exhibit different diving behavior depending on the season
Tracking the world's second-largest shark species has revealed that it moves to different depths depending on the time of year.
These sharks use unique molecules to glow green
In the depths of the sea, certain shark species transform the ocean's blue light into a bright green color that only other sharks can see -- but how they biofluoresce has previously been unclear.
Blue sharks use eddies for fast track to food
Blue sharks use large, swirling ocean currents, known as eddies, to fast-track their way down to feed in the ocean twilight zone.
Hundreds of sharks and rays tangled in plastic
Hundreds of sharks and rays have become tangled in plastic waste in the world's oceans, new research shows.
Baby tiger sharks eat songbirds
Tiger sharks have a reputation for being the 'garbage cans of the sea' -- they'll eat just about anything, from dolphins and sea turtles to rubber tires.
Sand tiger sharks return to shipwrecks off N.C. coast
A study co-led by Duke University reveals shipwrecks off North Carolina's coast are important habitats for sand tiger sharks, whose population plummeted in the 1980 and 1990s.
Sharks more vulnerable than originally thought, new research shows
New study reveals in excess of 2.5 million sharks are caught annually in the South West Indian Ocean - 73% more than officially reported.
Tunas, sharks and ships at sea
Researchers combine maps of marine predator habitats with satellite tracks of fishing fleets to identify regions where they overlap -- a step toward more effective wildlife management on the high seas.
The speedy secrets of mako sharks -- 'cheetahs of the ocean'
To investigate how shortfin mako sharks achieve their impressive speeds, researchers tested real sharkskin samples, using digital particle image velocimetry.
More Sharks News and Sharks Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.