Nav: Home

Noisy gene atlas to help reveal how plants 'hedge their bets' in race for survival

January 24, 2019

As parents of identical twins will tell you, they are never actually identical, even though they have the same genes. This is also true in the plant world. Now, new research by the University of Cambridge is helping to explain why 'twin' plants, with identical genes, grown in identical environments continue to display unique characteristics all of their own.

Plant scientists at the Sainsbury Laboratory Cambridge University (SLCU) have built a gene expression atlas that maps the 'noisy genes' of genetically identical plants. The research, published today in Molecular Systems Biology, found that around 9% of the genes in otherwise identical plants are highly variable in the way that they behave. Interestingly, many of these highly variable (noisiest) genes help a plant respond to its environment, including genes involved in reacting to light, temperature, pathogens and nutrients. This variation in gene behaviour could be useful in nature for populations of genetically similar plants to hedge against environmental stress such as drought, high salinity or extreme temperatures. This means that there will always a few plants in the population that are prepared to survive different stresses due to their variable gene behaviours (hedging their bets). But this variability can also be a problem, such as in agriculture where environments are more controlled and farmers want uniform crops that germinate and flower at the same time and respond equally to applications of fertilisers and water.

This is the first time that global levels of noise in gene expression has been measured in plants. The online open-access atlas (AraNoisy) will provide a resource for plant scientists around the world to study how gene expression variability influences plant survival and diversity within clonal populations. This important stepping-stone will help us to better understand how plants survive in fluctuating environments, and could eventually lead to further research in both plant conservation efforts and future crop development.

What is gene expression?

Looking at the full genetic code (called the genome) of an individual plant or animal is not enough to fully understand the individual's characteristics. The way genes behave (gene expression) can differ markedly between individuals with the same genome. A gene is expressed when the genetic code of the gene is used to direct a set of reactions that synthesise a protein or other functional molecule within a cell. Copying a segment of DNA to RNA is the first step in this sequence and is called transcription. In this study, 'noise' in gene expression refers to the measured level of variation in RNA between individual plants. Measuring the variability in gene expression reveals which genes are noisier than others.

Dr Sandra Cortijo, from the Locke Group at SLCU, is researching how gene expression is regulated and what causes some genes to be expressed in unpredictable ways.

To examine this, Dr Cortijo took on the mammoth task of measuring global levels of noise in gene expression in a single plant species. Using genetically identical plants, she measured the expression of all their individual genes over a 24-hour period.

"For our model plant, we used seedlings of a small wild brassica relative, called thale cress (Arabidopsis thaliana), which is most commonly seen growing as a weed in the cracks of pavements," Dr Cortijo said. "We performed RNA-sequencing on individual seedlings every two hours over a 24-hour period and analysed the variability for 15,646 individual genes in the plant's genome.

"We identified that 9% (1,358 individual genes) of the genes were highly variable for at least one time point during the 24-hour period. We found that these highly variable genes fell into two sets influenced by the diurnal cycle - genes with more variable activity at night or genes that have more variable activity during the day."

As part of the study, Dr Cortijo also identified factors that might increase gene expression variability. Highly variable genes tend to be shorter, to be targeted by a higher number of other genes (transcription factors) and to be characterised by a 'closed' chromatin environment (which is an environment that allows gene expression to be altered by attaching additional molecules during the gene reading process (transcription) without actually changing a cell's DNA).

"These results shed new light on the impact of transcriptional variability in gene expression regulation in plants and can be used as a foundation for further studies into how noisy genes are connected with how plants respond to their environment," Dr Cortijo said. "Plants are a wonderful system to work with when looking at how genes are regulated in response to environmental changes as they cannot move and thus have to continually sense and respond to environmental changes. The evolution of variable gene expression could increase the robustness of a plant population against varying environments without changing their genes. Understanding how plants produce and regulate this noise in gene expression will be important for the future development of more uniform performing crops and to understand how populations of wild plants can survive more frequent weather extremes due to climate change."

SLCU Research Group Leader, Dr James Locke, said the data was a significant new resource for further research: "This is an important resource for scientists studying how genetically identical plants survive fluctuating environments and provides a basis for future work looking at how genetic and epigenetic factors regulate variability for individual genes."
-end-
AraNoisy noisy gene atlas

AraNoisy is a web-based tool for accessing inter-individual transcriptional variability in Arabidopsis thaliana, throughout a 24-hour diurnal cycle. Gene expression variability for individual genes of interest can be viewed at https://jlgroup.shinyapps.io/AraNoisy/

University of Cambridge

Related Genes Articles:

How status sticks to genes
Life at the bottom of the social ladder may have long-term health effects that even upward mobility can't undo, according to new research in monkeys.
Symphony of genes
One of the most exciting discoveries in genome research was that the last common ancestor of all multicellular animals already possessed an extremely complex genome.
New genes out of nothing
One key question in evolutionary biology is how novel genes arise and develop.
Good genes
A team of scientists from NAU, Arizona State University, the University of Groningen in the Netherlands, the Center for Coastal Studies in Massachusetts and nine other institutions worldwide to study potential cancer suppression mechanisms in cetaceans, the mammalian group that includes whales, dolphins and porpoises.
How lifestyle affects our genes
In the past decade, knowledge of how lifestyle affects our genes, a research field called epigenetics, has grown exponentially.
Genes that regulate how much we dream
Sleep is known to allow animals to re-energize themselves and consolidate memories.
The genes are not to blame
Individualized dietary recommendations based on genetic information are currently a popular trend.
Timing is everything, to our genes
Salk scientists discover critical gene activity follows a biological clock, affecting diseases of the brain and body.
New genes on 'deteriorating' Y chromosome
Decoding Y chromosomes is difficult even with latest sequencing technologies.
Newly revealed autism-related genes include genes involved in cancer
Researchers in Italy have applied a computational technique that accounts for how genes interact, to find new networks of related genes that may be involved in autism spectrum disorder.
More Genes News and Genes Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.