Nav: Home

Multicolor holography technology could enable extremely compact 3D displays

January 24, 2019

WASHINGTON -- Researchers have developed a new approach to multicolor holography that could be used to make 3D color displays for augmented reality glasses, smartphones or heads-up displays without any bulky optical components.

In Optica, The Optical Society's journal for high impact research, researchers from Duke University, USA describe how they encoded a multicolor image onto a 300-by-300 micron hologram in a 2D waveguide structure, a very thin structure that guides light. The computer-generated hologram produces complex multicolor holographic images when the grating coupler is illuminated by red, green and blue light.

"The hologram could be embossed directly onto the lenses of augmented reality glasses to project an image directly into the pupil of the eye without requiring any bulky lenses, beam splitters or prisms," said Daniel L. Marks, a member of the research team. "It could also be used to project a 3D image from a smartphone onto a wall or nearby surface."

The new fabrication method encodes holograms in a material that is compatible with integrated photonics technology. This means that the holographic devices are easy to mass manufacture with the same fabrication methods used to make computer chips. The hologram producing elements could be incorporated into tiny chip-based devices that also house the light sources required to create the 3D images.

From one color to three

The new multicolor holography technique is based on computer-generated holograms. Unlike traditional holography, which requires a physical object and laser beams to create the interference pattern necessary to form a holographic image, computer-generated holography generates interference patterns digitally.

Computer generated holograms provide high-resolution 3D images, but it has proven difficult to create them in more than one color. The Duke team overcame this challenge by fabricating a grating -- a series of fringes --and a binary hologram in a waveguide made of a light-sensitive material known as photoresist. They developed a way to integrate the interference patterns for red, green and blue into a single binary hologram pattern.

"One of the difficult parts of making a multicolor display is combining the colors and then precisely separating them to generate a full color image," said Zhiqin Huang, first author of the paper. "With our approach this is all done all in one step on a single surface without any beam splitters or prisms. This makes it extremely amenable to integration into portable devices."

Another important achievement was creating the holographic device in a waveguide structure. "Others who have tried to create multicolor computer-generated holograms didn't use a waveguide, which makes it a challenge to integrate the structure into a device," said David R. Smith, leader of the research team. "Our design offers easier and more flexible integration with a form factor small enough for augmented reality and other displays."

Single-step color images

The researchers used their new holography method to encode interference patterns for static multicolor holograms of an apple, a flower and a bird. The resulting holographic images all matched well with theoretical predictions. Although they fabricated very small holograms for the demonstration, the researchers say that the technique could be easily scaled up to create larger displays. They also believe their approach could be incorporated with existing technologies -- such as those used to make liquid crystal displays -- to create dynamic images.

The researchers are now working to optimize the technology by reducing the light lost by the structures that encode the holograms. They also point out that incorporating the structures into a single integrated device with lasers would be necessary to make the technique practical.
-end-
Paper: Z. Huang, D. L. Marks, D. R. Smith, "Out-of-Plane Computer-Generated Multicolor Waveguide Holography," Optica, 6, 2, 119-124 (2019).

DOI: https://doi.org/10.1364/OPTICA.6.000119

About Optica

Optica is an open-access, online-only journal dedicated to the rapid dissemination of high-impact peer-reviewed research across the entire spectrum of optics and photonics. Published monthly by The Optical Society (OSA), Optica provides a forum for pioneering research to be swiftly accessed by the international community, whether that research is theoretical or experimental, fundamental or applied. Optica maintains a distinguished editorial board of more than 50 associate editors from around the world and is overseen by Editor-in-Chief Alex Gaeta, Columbia University, USA. For more information, visit Optica.

About The Optical Society

Founded in 1916, The Optical Society (OSA) is the leading professional organization for scientists, engineers, students and business leaders who fuel discoveries, shape real-life applications and accelerate achievements in the science of light. Through world-renowned publications, meetings and membership initiatives, OSA provides quality research, inspired interactions and dedicated resources for its extensive global network of optics and photonics experts. For more information, visit osa.org.

Media Contacts:

Aaron Cohen

301-633-6773

aaroncohenpr@gmail.com

mediarelations@osa.org

The Optical Society

Related Color Articles:

Stretchable variable color sheet that changes color with expansion and contraction
Toyohashi University of Technology research team have succeeded in developing a variable color sheet with a film thickness of 400 nanometers that changes color when stretched and shrunk.
High color purity 3D printing
ICFO researchers report on a new method to obtain high color purity 3D objects with the use of a new class of nanoparticles.
Building a better color vision test for animals
University of Cincinnati biologists modified simple electronics to create a color vision test for fiddler crabs and other animals.
Defects add color to quantum systems
Researchers are investigating light-emitting defects in materials that may someday form the basis of quantum-based technologies, such as quantum computers, quantum networks or engines that run on light.
The color of your clothing can impact wildlife
Your choice of clothing could affect the behavioral habits of wildlife around you, according to a study conducted by a team of researchers, including faculty at Binghamton University, State University of New York.
Recovering color images from scattered light
Engineers at Duke University have developed a method for extracting a color image from a single exposure of light scattered through a mostly opaque material.
Deciphering how the brain encodes color and shape
There are hundreds of thousands of distinct colors and shapes that a person can distinguish visually, but how does the brain process all of this information?
Fish-inspired material changes color using nanocolumns
Inspired by the flashing colors of the neon tetra fish, researchers have developed a technique for changing the color of a material by manipulating the orientation of nanostructured columns in the material.
Iridescent color from clear droplets
Under the right conditions, ordinary clear water droplets on a transparent surface can produce brilliant colors, without the addition of inks or dyes.
Turning a porous material's color on and off with acid
Stable, color-changing compound shows potential for electronics, sensors and gas storage.
More Color News and Color Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Clint Smith
The killing of George Floyd by a police officer has sparked massive protests nationwide. This hour, writer and scholar Clint Smith reflects on this moment, through conversation, letters, and poetry.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Nina
Producer Tracie Hunte stumbled into a duet between Nina Simone and the sounds of protest outside her apartment. Then she discovered a performance by Nina on April 7, 1968 - three days after the assassination of Dr. Martin Luther King Jr. Tracie talks about what Nina's music, born during another time when our country was facing questions that seemed to have no answer, meant then and why it still resonates today.  Listen to Nina's brother, Samuel Waymon, talk about that April 7th concert here.