Nav: Home

'Training gym' for lab-grown heart cells: Engineering researchers design new platform

January 24, 2019

Heart muscle cells need exercise -- even when they grow outside the human body. A new device designed by U of T Engineering researchers uses a rigorous training regimen to grow small amounts of cardiac tissue and measure how strongly it beats. The platform is ideal for testing the effects of potential drug molecules, and could help bring personalized medicine closer to reality.

"Many potential new drugs fail because of toxicity issues, and cardiac toxicity is a major challenge," says Professor Milica Radisic, who led the research team. "You can test potential drugs on heart cells grown in a petri dish, but those cells don't look the same as the cells in a real heart, and you can't get much information about their actual cardiac function."

Radisic and her collaborators build devices that enable lab-grown cells and tissues to develop into 3D forms that more closely resemble those in the human body. Five years ago, they created the Biowire, a platform in which heart cells grow around a silk suture. By pulsing electricity through the cells, the device causes them to elongate and become more like mature human heart cells.

Their latest paper, published today in Cell, describes a new platform dubbed Biowire II. It contains two wires made of elastic polymers and positioned three millimetres apart, with heart cells forming a small band of tissue between them. Each time the cells contract, they bend the wires. By measuring the amount of deflection in the wires, the researchers can determine the force of the contraction.

"The advantage of this system is that it tells us how a given drug molecule is affecting the cardiac output by examining forces of contraction and other key functional readouts," says Yimu Zhao, a PhD candidate in Radisic's lab and the lead author on the paper. "Does it weaken the heart or make it stronger? It will help find new drugs to treat heart conditions, but also eliminate drugs for other conditions that have adverse effects on the heart."

As with the original Biowire, electrical pulses are used to simulate exercise and "train" the heart cells. Zhao says the team has refined the training regimen to create tissue that is even more life-like than what was possible with the previous device, all in just six weeks.

"We have created both atrial and ventricular heart tissues, and we can even grow a heteropolar tissue, one with both atrial and ventricular ends," says Zhao. "Some drugs have a selective action on one or the other. With this system, we can detect this more efficiently."

Zhao says that one of the most impressive tests of the system came when the device was seeded with six different cell lines. Three came from patients with a condition called left ventricular hypertrophy, while the other three came from patients without the condition.

"It was a blind trial, nobody in our lab knew which cell line was which," says Zhao. "But as they grew in the device, we could clearly identify the tissues from patients with the condition by loss of contractility, which is one of the hallmarks of the disease. When we confirmed the results with our collaborators, they were so surprised -- we got it exactly right."

The ability to accurately replicate the heart condition of a real patient opens the door to new applications in personalized medicine. In addition to studying the progression of disease in a particular patient, the model heart could also be used to screen several potential treatments simultaneously, narrowing in on the ones most likely to be effective for that individual.

More research will be required before the platform can be used in this way, but Biowire II is already finding commercial application through TARA Biosystems, a spinoff co-founded by Radisic. The company uses its lab-grown heart tissues to carry out cardiac drug testing studies for pharmaceutical companies.

"We worked closely with them on this study," says Zhao. "They are already using a modified version of our protocol." She adds that the simplicity of the system will make it easier for companies like TARA to scale up the technology and increase the number of tests they can carry out simultaneously.

Ultimately, lab-grown tissues may one day be implanted back into humans to repair damaged organs. Radisic and her team are pursuing separate technologies to address that challenge, but she says that the fact that Biowire II is already having an impact is very gratifying.

"If our lab-grown tissues can keep dangerous drugs out of the pipeline and help find new drugs to treat heart conditions, it will save thousands of lives," says Radisic.

University of Toronto Faculty of Applied Science & Engineering

Related Personalized Medicine Articles:

Implementing microbiome diagnostics in personalized medicine: Rise of pharmacomicrobiomics
A new Commentary identifies three actionable challenges for translating pharmacomicrobiomics to personalized medicine in 2020.
Implementing post-genomic personalized medicine: The rise of glycan biomarkers
An in-depth look at the science of glycobiology and glycan diagnostics, and their promise in personalized medicine in the current post-genomic era are featured in a special issue of OMICS: A Journal of Integrative Biology, the peer-reviewed interdisciplinary journal published by Mary Ann Liebert, Inc., publishers.
Personalized medicine for atrial fibrillation
The study, published in Europace, uses signals from implantable devices -- pacemakers and defibrillators -- to analyze electrical signals in the heart during episodes of atrial fibrillation.
Fruit flies help in the development of personalized medicine
It is common knowledge that there is a connection between our genes and the risk of developing certain diseases.
Expanding the limits of personalized medicine with high-performance computing
Imagine that you have a serious medical condition. Then imagine that when you visit a team of doctors, they could build an identical virtual 'twin' of the condition and simulate millions of ways to treat it until they develop an effective treatment.
Personalized medicine software vulnerability uncovered by Sandia researchers
A weakness in one common open source software for genomic analysis left DNA-based medical diagnostics vulnerable to cyberattacks.
'Organs in a dish' pave the way for personalized medicine in gut and liver disease
One of the most exciting advancements in stem cell research has been the development of organoid systems, which are organ-like three-dimensional structures that mimic their corresponding organ in vivo.
Understanding gene interactions holds key to personalized medicine, scientists say
Scientists outline a new framework for studying gene function -- not in isolation, gene by gene, but as a network, to understand how multiple genes and genetic background influence trait inheritance.
Mount Sinai researchers call for diversity in the next generation of personalized medicine
Researchers from the Icahn School of Medicine at Mount Sinai reveal that genomic data extracted from population biobanks across the globe contain much less ethnic diversity than desirable.
Researchers call for big data infrastructure to support future of personalized medicine
Researchers from the George Washington University, the US Food and Drug Administration, and industry leaders published in PLOS Biology, describing a standardized communication method for researchers performing high-throughput sequencing called BioCompute.
More Personalized Medicine News and Personalized Medicine Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at