Nav: Home

Single-atom catalyst based on homogeneous catalysis prototype for CO2 transformation developed

January 24, 2019

Single-atom catalysts (SACs) with atomically dispersed active metal centers on supports represent an intermediary between heterogeneous and homogeneous catalysis. Therefore, understanding the homogeneous catalysis prototype creates a great opportunity for designing SACs and developing related applications.

HUANG Yanqiang and colleagues in Prof. ZHANG Tao's research group at the Dalian Institute of Chemical Physics (DICP) of the Chinese Academy of Sciences recently developed a strategy to rationally design a single-atom catalyst for applications. The method involves creating single-atom active sites on supports based on homologous homogeneous prototypes. This process ensures the stability of the active sites and also preserves catalytic capability during the corresponding homogeneous processes.

The strategy is exemplified in the Ir-based catalysts for the catalytic transformation of CO2 to formate. The support in an SAC is similar to the ligands of a mononuclear metal complex in homogeneous catalysis. The surface atomic structure of the support behaves like a "chelator" of organic complexes toward single atom metal centers, and this function is directly related to the chemical bonding and electronic state of the active metal sites.

Accordingly, the design of a support having electron-donating functional groups, which imitates a mononuclear Ir pincer complex, is a key factor in the development of an Ir-based SAC for the catalytic transformation of CO2 to formate.

By developing a porous organic polymer with aminopyridine functionalities to construct Ir single-atom active sites analogous to the mononuclear Ir complexes (Fig. 1), this material exhibits superior activity relative to conventional nanoparticle catalysts during the hydrogenation of CO2 to formate under mild conditions. This represents the best performance yet for a heterogeneous conversion of CO2 to formate, while maintaining outstanding stability upon recycling.

Meanwhile, a catalytic mechanism similar to that over a homogeneous Ir catalyst was observed with this quasi-homogeneous Ir-based SAC. The present strategy provides a promising basis for the design of efficient SACs for use in present-day homogeneous chemical conversions, and serves to illustrate potential bridging between homogeneous and heterogeneous catalysis.

Published in Chem, this work was supported by the National Key R&D Program of China, the Strategic Priority Research Program of the Chinese Academy of Sciences, and the National Natural Science Foundation of China.
-end-


Chinese Academy of Sciences Headquarters

Related Chemical Physics Articles:

Physics vs. asthma
A research team from the MIPT Center for Molecular Mechanisms of Aging and Age-Related Diseases has collaborated with colleagues from the U.S., Canada, France, and Germany to determine the spatial structure of the CysLT1 receptor.
2D topological physics from shaking a 1D wire
Published in Physical Review X, this new study propose a realistic scheme to observe a 'cold-atomic quantum Hall effect.'
Helping physics teachers who don't know physics
A shortage of high school physics teachers has led to teachers with little-to-no training taking over physics classrooms, reports show.
Physics at the edge
In 2005, condensed matter physicists Charles Kane and Eugene Mele considered the fate of graphene at low temperatures.
Using physics to print living tissue
3D printers can be used to make a variety of useful objects by building up a shape, layer by layer.
When the physics say 'don't follow your nose'
Engineers at Duke University are developing a smart robotic system for sniffing out pollution hotspots and sources of toxic leaks.
The coming of age of plasma physics
The story of the generation of physicists involved in the development of a sustainable energy source, controlled fusion, using a method called magnetic confinement.
Physics: Not everything is where it seems to be
Scientists at TU Wien, the University of Innsbruck and the ÖAW have for the first time demonstrated a wave effect that can lead to measurement errors in the optical position estimation of objects.
'Fudge factors' in physics?
What if your theory to model and predict the electronic structure of atoms isn't accounting for dispersion energy?
Breakthrough in quantum physics
Researchers from Graz University of Technology have described for the first time the dynamics which takes place within a trillionth of a second after photoexcitation of a single atom inside a superfluid helium nanodroplet.
More Chemical Physics News and Chemical Physics Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.