Nav: Home

Scientists tackle breeding challenges of land mine-finding rats

January 24, 2019

ITHACA, N.Y. - Thousands of people - many of them children - are hurt or killed by land mines each year, so finding these devices before they explode is critical.

There is a surprising champion of detection: the African giant pouched rat. Native to sub-Saharan Africa, the pouched rats are large - they can grow up to 3 feet long, including the tail - but are still too small to set off the land mines. They have an exceptional sense of smell - they are also used to detect tuberculosis - but scientists know very little about their biology or social structure, and they're difficult to breed in captivity.

"We wanted to understand their reproductive behaviors and olfactory capabilities, because they have been so important in humanitarian work," said Alex Ophir, assistant professor of psychology in the College of Arts and Sciences.

Cornell University researchers have found that the pouched rats' reproductive system is unlike any other species. They report their findings in a study, "Anogenital Distance Predicts Sexual Odour Preference in African Giant Pouched Rats," published Jan. 17 in Animal Behaviour. Co-authors were Ophir, postdoctoral researcher Angela Freeman and Michael Sheehan, assistant professor of neurobiology and behavior.

For male rats searching for a mate, identifying which adult females are reproductively available, or patent, is critical. Female pouched rats have extremely delayed sexual development. When the researchers looked at whether male pouched rats have a preference for the scent of females who are patent, they found something unexpected.

Males with longer anogenital distances (AGD) could detect the difference between patent and non-patent females and preferred the scent of patent females. AGD, an indirect marker of masculinization, is determined by developmental exposure in utero to sex hormones like testosterone. Males with shorter AGD showed no preference for patent females. Similarly, patent females showed a preference for the scent of masculinized males, while non-patent females did not.

This is the first time it's been shown that longer AGD is associated with more efficient communication and signal processing, according to Freeman, first author of the paper.

Ophir noted that being able to distinguish viable from non-viable partners in a split second has long-term repercussions for reproductive success among the species.

"It is amazing to think that in utero experiences can lock in the ability of these males to detect differences in female reproductive availability," Ophir said. "Our results raise interesting evolutionary questions, like how does natural selection operate on characteristics that are largely determined by chance features of the uterine environment?"

In other rodent species, patency is dictated by the estrous cycle. But that does not seem to be the case with pouched rats.

"This kind of patency change is different from basically every other rodent that's been studied up until this point," said Freeman. "Further studies to understand this process will help explain why breeding pouched rats is so difficult in captivity."
-end-
The study was supported by funding from the Army Research Office and DARPA and the College of Arts and Sciences.

Cornell University has dedicated television and audio studios available for media interviews supporting full HD, ISDN and web-based platforms.

Cornell University

Related Biology Articles:

Cell biology: Compartments and complexity
Ludwig-Maximilians-Universitaet (LMU) in Munich biologists have taken a closer look at the subcellular distribution of proteins and metabolic intermediates in a model plant.
Cell biology: The complexity of division by two
Ludwig-Maximilians-Universitaet (LMU) in Munich researchers have identified a novel protein that plays a crucial role in the formation of the mitotic spindle, which is essential for correct segregation of a full set of chromosomes to each daughter cell during cell division.
Cell biology: Dynamics of microtubules
Filamentous polymers called microtubules play vital roles in chromosome segregation and molecular transport.
The biology of color
Scientists are on a threshold of a new era of color science with regard to animals, according to a comprehensive review of the field by a multidisciplinary team of researchers led by professor Tim Caro at UC Davis.
Kinky biology
How and why proteins fold is a problem that has implications for protein design and therapeutics.
A new tool to decipher evolutionary biology
A new bioinformatics tool to compare genome data has been developed by teams from the Max F.
Biology's need for speed tolerates a few mistakes
In balancing speed and accuracy to duplicate DNA and produce proteins, Rice University researchers find evolution determined that speed is favored much more.
How to color a lizard: From biology to mathematics
Skin color patterns in animals arise from microscopic interactions among colored cells that obey equations discovered by Alan Turing.
Behavioral biology: Ripeness is all
In contrast to other members of the Drosophila family, the spotted-wing fly D. suzukii deposits its eggs in ripe fruits.
A systems biology perspective on molecular cytogenetics
Professor Henry Heng's team, from the medical school at Wayne State University, has published a perspective article titled A Systems Biology Perspective on Molecular Cytogenetics to address the issue.
More Biology News and Biology Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.