Nav: Home

Major northeastern snowstorms expected to continue with climate change

January 24, 2019

Even though climate change is expected to reduce the total amount of U.S. snowfall this century, it's unlikely to significantly rein in the most powerful nor'easters that pummel the East Coast, new research indicates.

The study finds that smaller snowstorms that drop a few inches will diminish greatly in number by late century. But the most damaging types of storms along the Eastern Seaboard, which strike every few years or so and cause widespread disruption, will remain about as frequent in a warming world.

"What this research finds is almost all of the decrease in snow occurs in weaker, more nuisance-type events," said atmospheric scientist Colin Zarzycki, the author of the study. "The really crippling storms that have major regional impacts on transportation, on the economy, on infrastructure are not significantly mitigated in a warming climate."

"The big nor'easters are not just going to go away."

Zarzycki conducted the research as a scientist at the National Center for Atmospheric Research. He is now a professor at Pennsylvania State University in the Department of Meteorology and Atmospheric Science.

The new study is part of a growing body of research into the complex ways that a warmer atmosphere will influence weather patterns and extreme weather events. Scientists have found that storms such as hurricanes and hailstorms are likely to become less frequent in the future -- but pack an even more powerful punch in those instances when they're especially intense.

The study was published in Geophysical Research Letters. It was primarily funded by the U.S. Department of Energy.

Taking a closer look at individual storms

Previous scientific studies have indicated that total snowfall over the course of the winter is likely to decline in coming decades. The reason, for the most part, is straightforward: more precipitation will fall as rain because of the warming influence of greenhouse gases on the atmosphere.

Zarzycki wanted to take a closer look to see how warmer temperatures would affect individual nor'easters. These powerful storms can bring blizzard conditions and coastal flooding to densely populated areas, sometimes causing widespread disruption and economic damage stretching into the billions of dollars.

To do so, Zarzycki turned to an existing set of advanced computer simulations of climate conditions, which scientists had created using the NCAR-based Community Earth System Model. The simulations used projections of society continuing a "business-as-usual" approach to emitting greenhouse gases, which would lead to pronounced warming this century. The simulation data set also consists of multiple ensemble members, which are realizations of the same climate but with different weather patterns that reflect the natural variability of weather. This was crucial for Zarzycki to get statistics for very rare but crippling storms.

Zarzycki applied a specialized algorithm to the simulations to essentially cut out and count the number of snowstorms. This enabled him to effectively peer into future climate conditions and zero in on the impact on individual nor'easters.

The results show that moderate nor'easters, which currently occur every one to two years, will decline sharply over the next few decades and become almost twice as rare by late century. But the frequency of very powerful storms that occur about once a decade, or of the most extreme storms that strike a few times per century, will be largely unchanged.

The reasons have to do with a combination of factors that will occur in the future: a shorter snow season, the ability of the atmosphere to hold more water, the warming of ocean waters that fuel powerful storms, and the increased energy in the warmer atmosphere that can turbocharge storms when conditions are lined up. All of these can modify a storm's impacts in different ways.

"We'll have fewer storms overall in the future, but when the atmospheric conditions align they'll still pack a wallop, with incredibly heavy snowfall rates," Zarzycki said.

The research also accounts for population distribution, which can highlight regional societal impacts. For example, Zarzycki found that the trajectories of future storms will generally remain the same, meaning they are about as likely as present-day storms to bear down on heavily populated areas along the coastal corridor. That's an important consideration, given that the path a snowstorm takes could lead to paralyzing one or more of the nation's most economically important cities.

Zarzycki did not analyze how the mix between rain and snow may evolve in the future or what that might mean for flooding. But the paper recommends that local officials incorporate potential changes in powerful storms when planning new projects.

"Additional considerations are needed when developing hydrological infrastructure for water resources and flood resistance as the behavior of snowpack, snowmelt, and runoff tied to coastal storms [in the Northeast] are likely to change in the future," the paper concludes.
About the article

Title: Projecting changes in Societally Impactful Northeastern U.S. Snowstorms

Author: C.M. Zarzycki

Journal: Geophysical Research Letters

This material is based upon work supported by the National Center for Atmospheric Research, a major facility sponsored by the National Science Foundation and managed by the University Corporation for Atmospheric Research. Any opinions, findings and conclusions or recommendations expressed in this material do not necessarily reflect the views of the National Science Foundation.

On the web:

On Twitter: @NCAR_Science

National Center for Atmospheric Research/University Corporation for Atmospheric Research

Related Climate Change Articles:

Mapping the path of climate change
Predicting a major transition, such as climate change, is extremely difficult, but the probabilistic framework developed by the authors is the first step in identifying the path between a shift in two environmental states.
Small change for climate change: Time to increase research funding to save the world
A new study shows that there is a huge disproportion in the level of funding for social science research into the greatest challenge in combating global warming -- how to get individuals and societies to overcome ingrained human habits to make the changes necessary to mitigate climate change.
Sub-national 'climate clubs' could offer key to combating climate change
'Climate clubs' offering membership for sub-national states, in addition to just countries, could speed up progress towards a globally harmonized climate change policy, which in turn offers a way to achieve stronger climate policies in all countries.
Review of Chinese atmospheric science research over the past 70 years: Climate and climate change
Over the past 70 years since the foundation of the People's Republic of China, Chinese scientists have made great contributions to various fields in the research of atmospheric sciences, which attracted worldwide attention.
A CERN for climate change
In a Perspective article appearing in this week's Proceedings of the National Academy of Sciences, Tim Palmer (Oxford University), and Bjorn Stevens (Max Planck Society), critically reflect on the present state of Earth system modelling.
Fairy-wrens change breeding habits to cope with climate change
Warmer temperatures linked to climate change are having a big impact on the breeding habits of one of Australia's most recognisable bird species, according to researchers at The Australian National University (ANU).
Believing in climate change doesn't mean you are preparing for climate change, study finds
Notre Dame researchers found that although coastal homeowners may perceive a worsening of climate change-related hazards, these attitudes are largely unrelated to a homeowner's expectations of actual home damage.
Older forests resist change -- climate change, that is
Older forests in eastern North America are less vulnerable to climate change than younger forests, particularly for carbon storage, timber production, and biodiversity, new research finds.
Could climate change cause infertility?
A number of plant and animal species could find it increasingly difficult to reproduce if climate change worsens and global temperatures become more extreme -- a stark warning highlighted by new scientific research.
Predicting climate change
Thomas Crowther, ETH Zurich identifies long-disappeared forests available for restoration across the world.
More Climate Change News and Climate Change Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at