Nav: Home

How to escape a black hole: simulations provide new clues about powerful plasma jets

January 24, 2019

Black holes are known for their voracious appetites, binging on matter with such ferocity that not even light can escape once it's swallowed up.

Less understood, though, is how black holes purge energy locked up in their rotation, jetting near-light-speed plasmas into space to opposite sides in one of the most powerful displays in the universe. These jets can extend outward for millions of light years.

New simulations led by researchers working at the Department of Energy's Lawrence Berkeley National Laboratory (Berkeley Lab) and UC Berkeley have combined decades-old theories to provide new insight about the driving mechanisms in the plasma jets that allows them to steal energy from black holes' powerful gravitational fields and propel it far from their gaping mouths.

The simulations could provide a useful comparison for high-resolution observations from the Event Horizon Telescope, an array that is designed to provide the first direct images of the regions where the plasma jets form.

The telescope will enable new views of the black hole at the center of our own Milky Way galaxy, as well as detailed views of other supermassive black holes.

"How can the energy in a black hole's rotation be extracted to make jets?" said Kyle Parfrey, who led the work on the simulations while he was an Einstein Postdoctoral Fellow affiliated with the Nuclear Science Division at Berkeley Lab. "This has been a question for a long time."

Now a senior fellow at NASA Goddard Space Flight Center in Maryland, Parfrey is the lead author of a study, published Jan. 23 in Physical Review Letters, that details the simulations research.

The simulations, for the first time, unite a theory that explains how electric currents around a black hole twist magnetic fields into forming jets, with a separate theory explaining how particles crossing through a black hole's point of no return - the event horizon - can appear to a distant observer to carry in negative energy and lower the black hole's overall rotational energy.

It's like eating a snack that causes you to lose calories rather than gaining them. The black hole actually loses mass as a result of slurping in these "negative-energy" particles.

Computer simulations have difficulty in modeling all of the complex physics involved in plasma-jet launching, which must account for the creation of pairs of electrons and positrons, the acceleration mechanism for particles, and the emission of light in the jets.

Berkeley Lab has contributed extensively to plasma simulations over its long history. Plasma is a gas-like mixture of charged particles that is the universe's most common state of matter.

Parfrey said he realized that more complex simulations to better describe the jets would require a combination of expertise in plasma physics and the general theory of relativity.

"I thought it would be a good time to try to bring these two things together," he said.

Performed at a supercomputing center at NASA Ames Research Center in Mountain View, California, the simulations incorporate new numerical techniques that provide the first model of a collisionless plasma - in which collisions between charged particles do not play a major role - in the presence of a strong gravitational field associated with a black hole.

The simulations naturally produce effects known as the Blandford-Znajek mechanism, which describes the twisting magnetic fields that form jets, and a separate Penrose process that describes what happens when negative-energy particles are gulped down by the black hole.

The Penrose process, "even though it doesn't necessarily contribute that much to extracting the black hole's rotation energy," Parfrey said, "is possibly directly linked to the electric currents that twist the jets' magnetic fields."

While more detailed than some earlier models, Parfrey noted that his team's simulations are still playing catch-up with observations, and are idealized in some ways to simplify the calculations needed to perform the simulations.

The team intends to better model the process by which electron-positron pairs are created in the jets in order to study the jets' plasma distribution and their emission of radiation more realistically for comparison to observations. They also plan to broaden the scope of the simulations to include the flow of infalling matter around the black hole's event horizon, known as its accretion flow.

"We hope to provide a more consistent picture of the whole problem," he said.
-end-
Other participants in the research are Alexander Philippov, who was an Einstein Postdoctoral Fellow at UC Berkeley, and Benoit Cerutti, a CNRS researcher at the Université Grenoble Alpes in France. Parfrey and Philippov were members of the Department of Astronomy and Theoretical Astrophysics Center at UC Berkeley, and Philippov is now at the Flatiron Institute in New York.

The work was supported by NASA through the Einstein Postdoctoral Fellowships program, CNES, Labex OSUG@2020, NASA's High-End Computing Program, TGCC, CINES, and the Simons Foundation.

Lawrence Berkeley National Laboratory addresses the world's most urgent scientific challenges by advancing sustainable energy, protecting human health, creating new materials, and revealing the origin and fate of the universe. Founded in 1931, Berkeley Lab's scientific expertise has been recognized with 13 Nobel Prizes. The University of California manages Berkeley Lab for the U.S. Department of Energy's Office of Science.

DOE's Office of Science is the single largest supporter of basic research in the physical sciences in the United States, and is working to address some of the most pressing challenges of our time. For more information, please visit the Office of Science website at science.energy.gov.

DOE/Lawrence Berkeley National Laboratory

Related Black Hole Articles:

Going against the flow around a supermassive black hole
At the center of a galaxy called NGC 1068, a supermassive black hole hides within a thick doughnut-shaped cloud of dust and gas.
Eyeballing a black hole's mass
There are no scales for weighing black holes. Yet astrophysicists from the Moscow Institute of Physics and Technology have devised a new way for indirectly measuring the mass of a black hole, while also confirming its existence.
First 'overtones' heard in the ringing of a black hole
By listening for specific tones in the gravitational waves of black hole mergers, researchers are putting Albert Einstein's theories to new tests.
Black hole holograms
Japanese researchers show how a holographic tabletop experiment can be used to simulate the physics of a black hole.
Where in the universe can you find a black hole nursery?
Gravitational wave researchers at the University of Birmingham have developed a new model that could help astronomers track down the origin of heavy black hole systems in the universe.
Astronomers capture first image of a black hole
The Event Horizon Telescope (EHT) -- a planet-scale array of eight ground-based radio telescopes forged through international collaboration -- was designed to capture images of a black hole.
Hiding black hole found
Astronomers have detected a stealthy black hole from its effects on an interstellar gas cloud.
Philosophy: What exactly is a black hole?
What is a black hole? In an article that has just appeared in the journal Nature Astronomy, Ludwig-Maximilians-Universitaet (LMU) in Munich philosopher Erik Curiel shows that physicists use different definitions of the concept, depending on their own particular fields of interest.
Beyond the black hole singularity
Our first glimpses into the physics that exist near the center of a black hole are being made possible using 'loop quantum gravity'--a theory that uses quantum mechanics to extend gravitational physics beyond Einstein's theory of general relativity.
Black hole 'donuts' are actually 'fountains'
Based on computer simulations and new observations from the Atacama Large Millimeter/submillimeter Array (ALMA), researchers have found that the rings of gas surrounding active supermassive black holes are not simple donut shapes.
More Black Hole News and Black Hole Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.