Nav: Home

Sci-fi to reality: Superpowered salamander may hold the key to human regeneration

January 24, 2019

LEXINGTON, Ky. (Jan. 24, 2019) -- Regeneration is one of the most enticing areas of biological research. How are some animals able to regrow body parts? Is it possible that humans could do the same? If scientists could unlock the secrets that confer those animals with this remarkable ability, the knowledge could have profound significance in clinical practice down the road.

Scientists at the University of Kentucky have taken this fantasy one step closer to reality, announcing today that they have assembled the genome of the axolotl, a salamander whose only native habitat is a lake near Mexico City.

Axolotls have long been prized as models for regeneration, said Randal Voss, a professor in the UK Spinal Cord and Brain Injury Research Center and a co-PI on the project.

"It's hard to find a body part they can't regenerate: the limbs, the tail, the spinal cord, the eye, and in some species, the lens, even half of their brain has been shown to regenerate," he said.

Though humans share many of the same genes with axolotl, the salamander genome is ten times larger, posing a formidable barrier to genetic analyses.

According to Jeramiah Smith, an associate professor in the UK Department of Biology and Voss' co-PI, recent efforts have provided much of the genetic data for the axolotl but, like a pile of puzzle pieces, until the genome is assembled in the correct order scientists cannot attempt large scale analyses of genome structure and function, which is key to teasing out the mechanisms that bestow upon axolotl their magical powers.

While the massive undertaking to map the human genome provided scientists with the tools to reproduce data in other organisms, the remarkable computational burden posed by organisms with larger genomes made such efforts largely impossible. But Smith and Voss cleverly adapted a classical genetic approach called linkage mapping to put the axolotl genome together in the correct order quickly and efficiently -- the first genome of this size to be assembled to date.

"Just a few years ago, no one thought it possible to assemble a 30+GB genome," said Smith. "We have now shown it is possible using a cost effective and accessible method, which opens up the possibility of routinely sequencing other animals with large genomes."

As proof of concept, Voss and Smith used the assembled data to rapidly identify a gene that causes a heart defect in an axolotl, thus providing a new model of human disease.

"Biomedical research is increasingly becoming a genetically-driven enterprise," said Voss. "To understand human disease, you have to see be able to study gene functions in other organisms like the axolotl."

"Now that we have access to genomic information, we can really start to probe axolotl gene functions and learn how they are able to regenerate body parts. Hopefully someday we can translate this information to human therapy, with potential applications for spinal cord injury, stroke, joint repair...the sky's the limit, really."

The University of Kentucky hosts the only federally-funded axolotl stock center in the U.S., providing axolotls to researchers and educators worldwide. Having a complete genome sequence for the laboratory axolotl greatly increases the value of this resource for biomedical research, particularly since wild axolotls have been designated critically endangered since 2006. According to Voss, UK has almost 1000 adult axolotls, a laboratory population whose pedigree dates back to the 1800's.

Voss' and Smith's data will be published in the February issue of Genome Research.
-end-
Their work is supported by grants from the National Institutes of Health (R24OD010435; P40OD019794) and the U.S. Department of Defense (W911NF1110475).

University of Kentucky

Related Genome Articles:

Breakthrough in genome visualization
Kadir Dede and Dr. Enno Ohlebusch at Ulm University in Germany have devised a method for constructing pan-genome subgraphs at different granularities without having to wait hours and days on end for the software to process the entire genome.
Sturgeon genome sequenced
Sturgeons lived on earth already 300 million years ago and yet their external appearance seems to have undergone very little change.
A sea monster's genome
The giant squid is an elusive giant, but its secrets are about to be revealed.
Deciphering the walnut genome
New research could provide a major boost to the state's growing $1.6 billion walnut industry by making it easier to breed walnut trees better equipped to combat the soil-borne pathogens that now plague many of California's 4,800 growers.
Illuminating the genome
Development of a new molecular visualisation method, RNA-guided endonuclease -- in situ labelling (RGEN-ISL) for the CRISPR/Cas9-mediated labelling of genomic sequences in nuclei and chromosomes.
A genome under influence
References form the basis of our comprehension of the world: they enable us to measure the height of our children or the efficiency of a drug.
How a virus destabilizes the genome
New insights into how Kaposi's sarcoma-associated herpesvirus (KSHV) induces genome instability and promotes cell proliferation could lead to the development of novel antiviral therapies for KSHV-associated cancers, according to a study published Sept.
Better genome editing
Reich Group researchers develop a more efficient and precise method of in-cell genome editing.
Unlocking the genome
A team led by Prof. Stein Aerts (VIB-KU Leuven) uncovers how access to relevant DNA regions is orchestrated in epithelial cells.
Why do we need one pair of genome?
Scientists have unraveled how the cell replication process destabilizes when it has more, or less, than a pair of chromosome sets, each of which is called a genome -- a major step toward understanding chromosome instability in cancer cells.
More Genome News and Genome Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.