Nav: Home

Silicones obtained at low temperatures with the help of air

January 24, 2019

Russian scientists have developed a new method for synthesizing para-carboxyplenylsiloxanes, a unique class of organosilicon compounds. The resulting compounds are promising for creating self-healing, electrically conductive, heat- and frost-resistant silicones.

Organosilicon compounds, especially materials based thereon such as silicones, are among the most in-demand products. The outstanding ability to withstand incredible thermal and mechanical stress makes it possible to use silicones for sealing and protecting many items in aircraft and rocket construction. The strength and durability of silicones enable their application in medicine, food industry, and in many other fields of human live.

Though many silicone materials have already been created and their fields of application have been found, scientists believe that their usability potential has not been fully revealed to date. This is due to one of the central problems in the modern chemistry of silicones, namely, the synthesis of organosilicon products with a "polar" (-C(O)OH, -OH, -NH2, etc.) functional group in an organic substituent. Such a moiety allows one to introduce other substituents much more easily, tune the ability of a compound to repel water or to form stable aqueous emulsions, and to impart other "super-capabilities" to a material. This opens quite unique prospects for subsequent modification of these compounds in order to synthesize new copolymers, self-healing and conductive materials, and compounds for the storage and delivery of drugs and fuels. Just a small modification of a compound would also allow one to solve the problem of low mechanical strength and "incompatibility" of silicones with polymers, such as polyesters and others.

With rare exception, the classical methods for synthesizing silicones (first monomers, then polymers) do not allow one to obtain functional organosilicon substrates. As a rule, these methods are either applicable to a narrow range of substrates or are time-consuming, expensive and involve multiple stages.

In recent years, there have been an increasing number of publications on the oxidation and functionalization of organic compounds involving molecular oxygen, i.e., a "green", simple and available oxidant. A number of industrially important processes already rely on this approach. However, despite all the advantages, these processes generally feature low selectivity and require rather drastic conditions (elevated temperature, high pressure, etc.).

A team of scientists from A.N. Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences (INEOS RAS), in collaboration with colleagues from the Russian Federation, used a combination of a metallic and organic reaction accelerators (catalysts), which allowed them to solve these problems: the reaction conditions were softened and high process selectivity was achieved. The reaction occurred with involvement of molecular oxygen, in liquid phase and at temperatures slightly above the room temperature, whereas many industrial processes are performed in gas phase under drastic conditions. Even now, the method can be scaled to gram amounts in order to produce a required compound. According to the scientists, this is very important since it is far not always that chemists can offer a reaction that can be used for applied purposes already tomorrow.

"Thus, we suggested a highly efficient method based on aerobic metal- and organo-catalyzed oxidation of starting para-tolylsiloxanes to para-carboxyphenylsiloxanes. This approach is based on "green", commercially available, simple and inexpensive reagents and employs mild reaction conditions: molecular oxygen as the oxidant, a process temperature of 40-60°?, atmospheric pressure", - says Dr. Ashot Arzumanyan, the leader and one of the contributors of this study, Senior Scientist of the Laboratory of organosilicon compounds named after K.A. Andrianov, INEOS RAS.

Furthermore, it has been shown that the suggested method is applicable to the oxidation of organic derivatives (alkylarenes) to the corresponding acids and ketones, as well as hydridosilanes to silanols (and/or siloxanols).

The scientists also studied whether materials can be obtained on the basis of para-carboxyphenylsiloxanes, including an analogue of such an industrially important polymer as PET that is used, for example, to bottle water and other beverages, to obtain fibers for clothes and for technical applications, etc. "The compounds that we obtained open prospects for the creation of self-healing, electrically conductive, heat- and frost-resistant and mechanically strong silicones. They can also serve as a base for developing new hybrid materials that may find use in catalysis, drug delivery, fuel storage, and in other fields of science, technology and medicine", Ashot notes.
-end-
The studies were performed by scientists from INEOS RAS in collaboration with colleagues from V.A. Engelgardt Institute of Molecular Biology, N.S. Enikolopov Institute of Synthetic Polymeric Materials, and N.D. Zelinsky Institute of Organic Chemistry of the Russian Academy of Sciences.

This study was supported by a grant of the President programme of research projects of the Russian Science Foundation (RSF). The results of studies have been published in the Journal of the American Chemical Society.

https://pubs.acs.org/doi/10.1021/jacs.8b12600

AKSON Russian Science Communication Association

Related Molecular Articles:

A molecular map for the plant sciences
Plants are essential for life on earth. They provide food for essentially all organisms, oxygen for breathing, and they regulate the climate of the planet.
A molecular atlas of skin cells
Our skin protects us from physical injury, radiation and microbes, and at the same time produces hair and facilitates perspiration.
Molecular bodyguards against Parkinson's disease
Chaperone proteins in human cells dynamically interact with the protein α-Synuclein, which is strongly associated with Parkinson's disease.
A marvelous molecular machine
Squids, octopuses and cuttlefish are undisputed masters of deception and camouflage.
Molecular nanocarbons with mechanical bonds
Scientists at Nagoya University have succeeded in synthesizing molecular nanocarbons with knots and catenanes by using a novel method in which silicon atoms are used.
A molecular 'atlas' of animal development
Scientists have studied the nematode worm Caenorhabditis elegans for decades, making essential contributions to basic science.
A molecular 'Trojan Horse'
The research group of Nuno Maulide from the Faculty of Chemistry of the University of Vienna has achieved the synthesis of a potential immunosuppressive agent by modification of a naturally occurring compound.
Pinpointing the molecular mechanisms of aging
Although each and every one of us goes through it, aging is a poorly understood process.
Scientists film molecular rotation
Scientists have used precisely tuned pulses of laser light to film the ultrafast rotation of a molecule.
Towards a light driven molecular assembler
A team of chemists at Kiel University (Germany) built the first artificial assembler, which uses light as the energy source.
More Molecular News and Molecular Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.