Nav: Home

Greenland's southwest ice sheet particularly sensitive to warming

January 24, 2019

The ice fields of southwest Greenland are becoming particularly sensitive to a climate cycle called the North Atlantic Oscillation as global warming proceeds, reports an international team that includes a University of Arizona geoscientist.

The largest sustained ice loss in Greenland from early 2003 to mid-2013 came from summertime melting of the ice fields in southwest Greenland, the researchers found. Their study is published this week in the Proceedings of the National Academy of Sciences.

"When we see really big changes in southwest Greenland, we can be sure it's atmosphere-related, because it's an increase in surface melt," said co-author Christopher Harig, a UA assistant professor of geosciences.

Unlike other parts of Greenland, the southwest region has few glaciers. It loses ice when warmer temperatures melt its ice sheets, generating a network of rivers that flow above and below the ice into the ocean.

As global warming progresses, southwest Greenland will become a major contributor to sea level rise, the researchers write.

"In the next 50 years, we're expecting a lot of atmospheric warming," Harig said. "If Greenland is sensitive to the warming, we're going to see a lot of ice loss and therefore we're going to see a lot of sea level rise."

The study's title and a list of co-authors is at the bottom of this news release. The National Science Foundation funded the research.

Figuring out the connection between warming in southwest Greenland and the North Atlantic Oscillation, or NAO, climate cycle began when Harig noticed that in 2013 and 2014, the amount of ice being lost from Greenland changed.

Harig and co-author Frederik Simons of Princeton University were measuring the loss of snow and ice covering Greenland by using monthly satellite data from the Gravity Recovery and Climate Experiment, or GRACE. As Greenland's ice melts, it changes the Earth's gravitational field slightly, which can be detected by GRACE.

"We found a year that was really different from the past 10 years," Harig said. "The melting was getting worse every year--and then took a break from getting worse."

He and his colleagues were puzzled about the slowdown, so they contacted Michael Bevis of The Ohio State University in Columbus to see whether the network of GPS receivers along the coast of Greenland showed the same phenomenon.

The GPS receivers are attached to bedrock. When large amounts of ice melt, the surface rebounds because it is no longer weighed down by that mass of ice. The network allows scientists to detect that rebound and calculate how much ice was lost.

The Greenland GPS network had recorded the same slowing of ice loss during the same time period.

The slowdown in melting lasted from about 12 to 18 months. The researchers found the slowdown coincided with the NAO swinging from its negative phase to its positive phase.

During the negative phase, Greenland has less snowfall and more sun, and melting increases. In contrast, during the positive phase, Greenland is colder and cloudier, so the ice melts less.

When the NAO flipped back to its negative phase in 2015, the rate of melting starting climbing again.

"We make a compelling case that the North Atlantic Oscillation is really driving this inter-annual variation in ice loss," Harig said.

"I continue to be interested in understanding the causes of ice loss in Greenland," he said. "This next decade is really about getting a lot more specific about what's causing ice loss here rather than over there."

Harig, Simons and Bevis's co-authors on the paper "Accelerating changes in ice mass within Greenland, and the ice sheet's sensitivity to atmospheric forcing" are Shfaqat Khan and Per Knudsen of the Technical University of Denmark in Copenhagen; Abel Brown, Eric Kendrick and Dana Caccamise of The Ohio State University; Michael Willis of the University of Colorado in Boulder; Xavier Fettweis of the University of Liege in Belgium; Michiel van den Broeke of Utrecht University in the Netherlands; Finn Madsen of the Danish Technical University in Copenhagen; Tonie van Dam of the University of Luxembourg; and Thomas Nylen of UNAVCO Inc. in Boulder, Colorado.
-end-
Chris Harig
520-621-2070
charig@email.arizona.edu

Media contact:
Mari N. Jensen
520-626-9635
mnjensen@email.arizona.edu

University of Arizona

Related Sea Level Rise Articles:

UCF study: Sea level rise impacts to Canaveral sea turtle nests will be substantial
The study examined loggerhead and green sea turtle nests to predict beach habitat loss at four national seashores by the year 2100.
Wetlands will keep up with sea level rise to offset climate change
Sediment accrual rates in coastal wetlands will outpace sea level rise, enabling wetlands to increase their capacity to sequester carbon, a study from the Marine Biological Laboratory, Woods Hole, shows.
Antarctic ice cliffs may not contribute to sea-level rise as much as predicted
In a paper published in Geophysical Research Letters, researchers report that in order for a 90-meter ice cliff to collapse entirely, the ice shelves supporting the cliff would have to break apart extremely quickly, within a matter of hours -- a rate of ice loss that has not been observed in the modern record.
Scientists discover evidence for past high-level sea rise
An international team of scientists, studying evidence preserved in speleothems in a coastal cave, illustrate that more than three million years ago -- a time in which the Earth was two to three degrees Celsius warmer than the pre-industrial era -- sea level was as much as 16 meters higher than the present day.
Corals in Singapore likely to survive sea-level rise: NUS study
Marine scientists from the National University of Singapore found that coral species in Singapore's sedimented and turbid waters are unlikely to be impacted by accelerating sea-level rise
Study highlights vulnerability of rural coast to sea-level rise
A new paper in Nature Climate Change highlights growing recognition that existing knowledge is insufficient to best inform public and private decisions regarding the encroachment of wetlands into privately owned farm land and forests.
How sea level rise affects birds in coastal forests
Saltwater intrusion changes coastal vegetation that provides bird habitat. Researchers found that the transition from forests to marshes along the North Carolina coast due to climate change could benefit some bird species of concern for conservation.
Snow over Antarctica buffered sea level rise during last century
A new NASA-led study has determined that an increase in snowfall accumulation over Antarctica during the 20th century mitigated sea level rise by 0.4 inches.
Uneven rates of sea level rise tied to climate change
The pattern of uneven sea level rise over the last quarter century has been driven in part by human-caused climate change, not just natural variability, according to a new study.
Global sea level could rise 50 feet by 2300, study says
Global average sea-level could rise by nearly 8 feet by 2100 and 50 feet by 2300 if greenhouse gas emissions remain high and humanity proves unlucky, according to a review of sea-level change and projections by Rutgers and other scientists.
More Sea Level Rise News and Sea Level Rise Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Listen Again: Reinvention
Change is hard, but it's also an opportunity to discover and reimagine what you thought you knew. From our economy, to music, to even ourselves–this hour TED speakers explore the power of reinvention. Guests include OK Go lead singer Damian Kulash Jr., former college gymnastics coach Valorie Kondos Field, Stockton Mayor Michael Tubbs, and entrepreneur Nick Hanauer.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Dispatch 6: Strange Times
Covid has disrupted the most basic routines of our days and nights. But in the middle of a conversation about how to fight the virus, we find a place impervious to the stalled plans and frenetic demands of the outside world. It's a very different kind of front line, where urgent work means moving slow, and time is marked out in tiny pre-planned steps. Then, on a walk through the woods, we consider how the tempo of our lives affects our minds and discover how the beats of biology shape our bodies. This episode was produced with help from Molly Webster and Tracie Hunte. Support Radiolab today at Radiolab.org/donate.