Nav: Home

IUPUI researchers re-create retinal microenvironment in a dish with human stem cells

January 24, 2019

INDIANAPOLIS -- IUPUI biologists, growing human pluripotent stem cell-derived retinal ganglion cells in the lab, have developed a way to create more-mature models that better mimic the environment in the human retina. By introducing hPSC-RGCs to astrocytes, researchers can create cells that are more analogous to human RGCs and can be further used to study diseases such as glaucoma. These results are published online in Stem Cell Reports.

Jason Meyer, an associate professor of biology in the School of Science at IUPUI, is using the hPSC-derived retinal organoids to better understand the development and maturation of retinal ganglion cells. These cells transmit visual information to the brain, and when that connection is disturbed, a person loses sight. But RGCs do not exist and function in the retina alone; the astrocyte cells are vital in providing support and instruction to the retinal ganglion cells.

"The astrocyte is found in the retina, but very specifically in association with the retinal ganglion cells," Meyer said. "They are found all around the retinal ganglion cells and throughout the optic nerve connecting to the brain, so we found they have an important role in how these RGCs are developing and functioning."

Biology graduate researcher and first author on the paper Kirstin B. VanderWall set up a system to grow RGCs alone or with the astrocytes to see how the astrocytes affect the growth and maturation of these cells.

"What we found is that the astrocytes speed up the differentiation and provide a retinal ganglion cell that functions more appropriately and acts more like how we would expect these cells to function in the human retina," Meyer said.

RGCs are the cells primarily damaged by glaucoma, a disease that is the second leading cause of blindness. These findings will guide development of a more appropriate model to study how the cells are affected in diseases like glaucoma and could lead to a lab-grown model of the disease.

"Glaucoma doesn't develop in immature cells that are still growing; we want to get the cells we study as close as possible to the stage when they start to develop problems," Meyer said. "Ultimately, what we found is that these retinal ganglion cells do acquire some features of maturation on their own, but we are able to enhance that with the astrocytes."
-end-
"Astrocytes Regulate the Development and Maturation of Retinal Ganglion Cells Derived from Human Pluripotent Stem Cells" is published online in Stem Cell Reports.

In addition to VanderWall and Meyer, IUPUI and Indiana University authors on the study are Ridhima Vij, Sarah K Ohlemacher, Akshayalakshmi Sridhar, Clarisse M. Fligor, Elyse M. Feder, Michael C. Edler, Anthony J. "A.J." Baucum II and Theodore R. Cummins.

The study was supported in part by the National Eye Institute, BrightFocus Foundation, Indiana State Department of Health Spinal Cord and Brain Injury Fund, IU Office of the Vice President for Research, IUPUI Signature Center for Brain and Spinal Cord Injury, IUPUI University Fellowship, the Purdue Research Foundation Fellowship, and the Stark Neuroscience Research Institute/Eli Lilly and Company predoctoral fellowship.

Indiana University-Purdue University Indianapolis School of Science

Related Glaucoma Articles:

Long-term statin use associated with lower glaucoma risk
A new study brings the connection between statin use and risk of glaucoma into sharper focus.
Health burden of glaucoma has risen worldwide
The health burden of glaucoma has continuously increased around the globe in the past 25 years, according to an Acta Opthalmologica study.
UAlberta scientists first to pinpoint a cause of pigmentary glaucoma
An international team of researchers has identified a gene responsible for the onset of pigmentary glaucoma, which may lead to new therapies for the condition.
Using EHR-linked medication reminders for glaucoma patients
Mobile device reminders have been associated with better medication adherence and linking reminders to patient electronic health records (EHRs) could potentially allow some oversight by clinicians.
Traditional glaucoma test can miss severity of disease
The most common test for glaucoma can underestimate the severity of the condition by not detecting the presence of central vision loss, also known as macular degeneration, according to a new Columbia University study.
More Glaucoma News and Glaucoma Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#537 Science Journalism, Hold the Hype
Everyone's seen a piece of science getting over-exaggerated in the media. Most people would be quick to blame journalists and big media for getting in wrong. In many cases, you'd be right. But there's other sources of hype in science journalism. and one of them can be found in the humble, and little-known press release. We're talking with Chris Chambers about doing science about science journalism, and where the hype creeps in. Related links: The association between exaggeration in health related science news and academic press releases: retrospective observational study Claims of causality in health news: a randomised trial This...