Nav: Home

The 'place' of emotions

January 24, 2020

The entire set of our emotions is topographically represented in a small region of the brain, a 3 centimeters area of the cortex, report scientists in a study conducted at the IMT School for Advanced Studies Lucca, Italy. The discovery of this "map" of emotions comes from a work conducted by the Molecular Mind Laboratory (MoMiLab) directed by Professor Pietro Pietrini, and recently published in Nature Communications.

To investigate how the brain processes the distinct basic component of emotional states, the IMT School researchers asked a group of 15 volunteers enrolled in the study to express, define and rate their emotions while watching the iconic 1994 American movie Forrest Gump. For the entire length of the film, in fact, the 15 volunteers reported scene by scene their feelings and their respective strength on a scale from 1 to 100. Their answers were then compared to those of 15 other persons who had watched the same movie during a functional magnetic resonance imaging (fMRI) study conducted in Germany. The imaging data were obtained through "open science", a platform where scientists from different laboratories can share their data, so that anyone can replicate their findings or use the data for novel experiments, as in this case.

To unveil cortical regions involved in emotion processing, the "emotional ratings" were used by scientists for predicting the fMRI response of the brain. The correspondence between functional characteristics and the relative spatial arrangement of distinct patches of cortex was then used to test the topography of affective states. As researchers found out, the activation of temporo-parietal brain regions was associated to the affective states we feel in an exact moment, providing us with the map of our emotional experience.

The analysis of the data by Giada Lettieri, first author of the study along with Giacomo Handjaras, both PhD students at the IMT School, and their collaborators shows that the polarity, complexity and intensity of emotional experiences are represented by smooth transitions in right temporo-parietal territories. The spatial arrangement allows the brain to map a variety of affective states within a single patch of cortex.

To summarize, the right temporo-parietal junction can topographically represent the variety of the affective states that we experience: which emotions we feel in a specific moment, and how much we perceive them. The process resembles the way senses, like sight or hearing, are represented in the brain. For this reason, the researchers proposed the definition emotionotopy as a principle of emotion coding.

Historically, emotions have often been considered a "separate" human faculty, well distinct from cognition. As a matter of fact, this point of view has been recently challenged by various studies showing how much affective responses can influence cognitive processes, such as decision-making and memory. The IMT School study adds new details to this more recent view that the principles responsible for the representation of sensory stimuli are also responsible for the mapping of emotions.

"This study is also an interesting example of open science and sharing data initiatives in neuroscience", said Luca Cecchetti, senior author of the paper and Assistant Professor at the IMT School. "The fMRI data were collected by Michael Hanke and colleagues at Otto von Guericke University Magdeburg and publicly released at studyforrest.org. This allowed us to exploit high-quality neuroimaging data, at the same time saving resources and time. Following the same principle, we released data and code at https://osf.io/tzpdf/".

"Dissecting the brain correlates of elementary factors that modulate intensity and quality of our emotions has major implications to understand what happens when emotions get sick, as in case of depression and phobia. These studies are getting psychiatry closer to other fields of medicine in finding objective biological correlates of feelings, which are subjective states", commented Professor Pietro Pietrini, psychiatrist and co-author of the research, director of MoMiLab at the IMT School.
-end-
About IMT School for Advanced Studies Lucca: The IMT School for Advanced Studies Lucca is a Public University School for Higher Education and Research that focuses on the analysis of economic, societal, technological and cultural systems. Its research agenda is strongly interdisciplinary. MoMiLab integrates basic neuroscience methods, including molecular biology and genetics, with experimental psychophysiology, cognitive neuroscience and structural/functional brain imaging.

https://www.imtlucca.it/en
https://momilab.imtlucca.it/

Emotionotopy in the Human Right Temporo-Parietal Cortex
Giada Lettieri, Giacomo Handjaras, Emiliano Ricciardi, Andrea Leo, Paolo Papale, Monica Betta, Pietro Pietrini and Luca Cecchetti - doi: 10.1038/s41467-019-13599-z.

IMT School for Advanced Studies Lucca

Related Brain Articles:

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.
Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.
An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.
Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.
Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.
Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.
Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.
BRAIN Initiative tool may transform how scientists study brain structure and function
Researchers have developed a high-tech support system that can keep a large mammalian brain from rapidly decomposing in the hours after death, enabling study of certain molecular and cellular functions.
Wiring diagram of the brain provides a clearer picture of brain scan data
In a study published today in the journal BRAIN, neuroscientists led by Michael D.
Blue Brain Project releases first-ever digital 3D brain cell atlas
The Blue Brain Cell Atlas is like ''going from hand-drawn maps to Google Earth'' -- providing previously unavailable information on major cell types, numbers and positions in all 737 brain regions.
More Brain News and Brain Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Debbie Millman: Designing Our Lives
From prehistoric cave art to today's social media feeds, to design is to be human. This hour, designer Debbie Millman guides us through a world made and remade–and helps us design our own paths.
Now Playing: Science for the People

#574 State of the Heart
This week we focus on heart disease, heart failure, what blood pressure is and why it's bad when it's high. Host Rachelle Saunders talks with physician, clinical researcher, and writer Haider Warraich about his book "State of the Heart: Exploring the History, Science, and Future of Cardiac Disease" and the ails of our hearts.
Now Playing: Radiolab

Insomnia Line
Coronasomnia is a not-so-surprising side-effect of the global pandemic. More and more of us are having trouble falling asleep. We wanted to find a way to get inside that nighttime world, to see why people are awake and what they are thinking about. So what'd Radiolab decide to do?  Open up the phone lines and talk to you. We created an insomnia hotline and on this week's experimental episode, we stayed up all night, taking hundreds of calls, spilling secrets, and at long last, watching the sunrise peek through.   This episode was produced by Lulu Miller with Rachael Cusick, Tracie Hunte, Tobin Low, Sarah Qari, Molly Webster, Pat Walters, Shima Oliaee, and Jonny Moens. Want more Radiolab in your life? Sign up for our newsletter! We share our latest favorites: articles, tv shows, funny Youtube videos, chocolate chip cookie recipes, and more. Support Radiolab by becoming a member today at Radiolab.org/donate.