Can lithium halt progression of Alzheimer's disease?

January 24, 2020

There remains a controversy in scientific circles today regarding the value of lithium therapy in treating Alzheimer's disease. Much of this stems from the fact that because the information gathered to date has been obtained using a multitude of differential approaches, conditions, formulations, timing and dosages of treatment, results are difficult to compare. In addition, continued treatments with high dosage of lithium render a number of serious adverse effects making this approach impracticable for long term treatments especially in the elderly.

In a new study, however, a team of researchers at McGill University led by Dr. Claudio Cuello of the Department of Pharmacology and Therapeutics, has shown that, when given in a formulation that facilitates passage to the brain, lithium in doses up to 400 times lower than what is currently being prescribed for mood disorders is capable of both halting signs of advanced Alzheimer's pathology such as amyloid plaques and of recovering lost cognitive abilities. The findings are published in the most recent edition of the Journal of Alzheimer's Disease.

Building on their previous work

"The recruitment of Edward Wilson, a graduate student with a solid background in psychology, made all the difference," explains Dr. Cuello, the study's senior author, reflecting on the origins of this work. With Wilson, they first investigated the conventional lithium formulation and applied it initially in rats at a dosage similar to that used in clinical practice for mood disorders. The results of the initial tentative studies with conventional lithium formulations and dosage were disappointing however, as the rats rapidly displayed a number of adverse effects. The research avenue was interrupted but renewed when an encapsulated lithium formulation was identified that was reported to have some beneficial effects in a Huntington disease mouse model.

The new lithium formulation was then applied to a rat transgenic model expressing human mutated proteins causative of Alzheimer's, an animal model they had created and characterized. This rat develops features of the human Alzheimer's disease, including a progressive accumulation of amyloid plaques in the brain and concurrent cognitive deficits.

"Microdoses of lithium at concentrations hundreds of times lower than applied in the clinic for mood disorders were administered at early amyloid pathology stages in the Alzheimer's-like transgenic rat. These results were remarkably positive and were published in 2017 in Translational Psychiatry and they stimulated us to continue working with this approach on a more advanced pathology," notes Dr. Cuello.

Encouraged by these earlier results, the researchers set out to apply the same lithium formulation at later stages of the disease to their transgenic rat modelling neuropathological aspects of Alzheimer's disease. This study found that beneficial outcomes in diminishing pathology and improving cognition can also be achieved at more advanced stages, akin to late preclinical stages of the disease, when amyloid plaques are already present in the brain and when cognition starts to decline.

"From a practical point of view our findings show that microdoses of lithium in formulations such as the one we used, which facilitates passage to the brain through the brain-blood barrier while minimizing levels of lithium in the blood, sparing individuals from adverse effects, should find immediate therapeutic applications," says Dr. Cuello. "While it is unlikely that any medication will revert the irreversible brain damage at the clinical stages of Alzheimer's it is very likely that a treatment with microdoses of encapsulated lithium should have tangible beneficial effects at early, preclinical stages of the disease."

Moving forward

Dr. Cuello sees two avenues to build further on these most recent findings. The first involves investigating combination therapies using this lithium formulation in concert with other interesting drug candidates. To that end he is pursuing opportunities working with Dr. Sonia Do Carmo, the Charles E. Frosst-Merck Research Associate in his lab.

He also believes that there is an excellent opportunity to launch initial clinical trials of this formulation with populations with detectable preclinical Alzheimer's pathology or with populations genetically predisposed to Alzheimer's, such as adult individuals with Down Syndrome. While many pharmaceutical companies have moved away from these types of trials, Dr. Cuello is hopeful of finding industrial or financial partners to make this happen, and, ultimately, provide a glimmer of hope for an effective treatment for those suffering from Alzheimer's disease.
-end-
"NP03, a Microdose Lithium Formulation, Blunts Early Amyloid Post-Plaque Neuropathology in McGill-R-Thy1-APP Alzheimer-Like Transgenic Rats," by Wilson, Do Carmo, Cuello, et al. was published online on December 16, 2019 in the Journal of Alzheimer's disease. doi: 10.3233/JAD-190862

McGill University

Related Brain Articles from Brightsurf:

Glioblastoma nanomedicine crosses into brain in mice, eradicates recurring brain cancer
A new synthetic protein nanoparticle capable of slipping past the nearly impermeable blood-brain barrier in mice could deliver cancer-killing drugs directly to malignant brain tumors, new research from the University of Michigan shows.

Children with asymptomatic brain bleeds as newborns show normal brain development at age 2
A study by UNC researchers finds that neurodevelopmental scores and gray matter volumes at age two years did not differ between children who had MRI-confirmed asymptomatic subdural hemorrhages when they were neonates, compared to children with no history of subdural hemorrhage.

New model of human brain 'conversations' could inform research on brain disease, cognition
A team of Indiana University neuroscientists has built a new model of human brain networks that sheds light on how the brain functions.

Human brain size gene triggers bigger brain in monkeys
Dresden and Japanese researchers show that a human-specific gene causes a larger neocortex in the common marmoset, a non-human primate.

Unique insight into development of the human brain: Model of the early embryonic brain
Stem cell researchers from the University of Copenhagen have designed a model of an early embryonic brain.

An optical brain-to-brain interface supports information exchange for locomotion control
Chinese researchers established an optical BtBI that supports rapid information transmission for precise locomotion control, thus providing a proof-of-principle demonstration of fast BtBI for real-time behavioral control.

Transplanting human nerve cells into a mouse brain reveals how they wire into brain circuits
A team of researchers led by Pierre Vanderhaeghen and Vincent Bonin (VIB-KU Leuven, Université libre de Bruxelles and NERF) showed how human nerve cells can develop at their own pace, and form highly precise connections with the surrounding mouse brain cells.

Brain scans reveal how the human brain compensates when one hemisphere is removed
Researchers studying six adults who had one of their brain hemispheres removed during childhood to reduce epileptic seizures found that the remaining half of the brain formed unusually strong connections between different functional brain networks, which potentially help the body to function as if the brain were intact.

Alcohol byproduct contributes to brain chemistry changes in specific brain regions
Study of mouse models provides clear implications for new targets to treat alcohol use disorder and fetal alcohol syndrome.

Scientists predict the areas of the brain to stimulate transitions between different brain states
Using a computer model of the brain, Gustavo Deco, director of the Center for Brain and Cognition, and Josephine Cruzat, a member of his team, together with a group of international collaborators, have developed an innovative method published in Proceedings of the National Academy of Sciences on Sept.

Read More: Brain News and Brain Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.