First view of a world without fire

January 25, 2005

The natural vegetation covering the globe looks like it does because of the climate, doesn't it? Forests are found where water is abundant and it is not too cold, deserts are found where it is dry. This is what our intuition tells us - but it is not always true.

New research carried out by Bond, Woodward and Midgley from University of Cape Town, University of Sheffield and the South African National Biodiversity Institute of and published in the February 2005 issue of 'New Phytologist' (www.newphytologist.com) has shown that a potent force overrides climate in shaping vegetation - fire.

Much of the world is covered by vegetation that seems out of place, for example in Mediterranean regions of South Africa low shrublands are found where rainfall is great enough to support forests. We also know, from satellite imagery, that wildfires are a global phenomenon occurring on all vegetated continents. Bond et al. suspected that fires are common in areas where vegetation does not "fit" the climate. If true, this suggests that fire has a major effect on the ecosystems of the world. So, how different would the world look if we could 'switch fire off'?

A new type of ecosystem model, Dynamic Global Vegetation Models (DGVMs) - developed to answer questions on the link between global climate change and vegetation, was used to simulate a world without fire for this research.

Dr William Bond, University of Cape Town, explains: "For the first time, we have a global estimate of the importance of fire in shaping the natural world: without fire, the extent of closed forests would more than double (from 27% to 56% of the vegetated surface of the world), tropical grasslands and savannas would shrink to less than half (48%) of their current extent and temperate grasslands and shrublands, including the shrublands of Mediterranean climate regions, would shrink to 60% of their current extent."

"Fires destroy property and livelihoods and affect local air quality, but perhaps more importantly, fires destroy above-ground vegetation on a huge scale - burning the critical carbon sinks which form such a fundamental part of the world's attempts, through the Kyoto protocol, to slow the rate of carbon dioxide increase in atmosphere. Human influences on fire are near universal. We suppress fires in some regions and ignite them in others. However the fire-maintained ecosystems identified in our research have been burning for millions of years and include some of the most biodiverse regions of the world. We need to balance the necessity of using fire in these ecosystems with protecting forests from indiscriminate burning. This issue requires urgent and focused attention from the ecological and geochemical communities if we are to manage the effects of global change on our planet."

Fire changes vegetation quickly, directly and fundamentally - it is now clear from this research that a fundamental understanding of landscape fires is necessary for comprehending the way much of the world works and for projecting the effects of changing human land use and climate on vegetation. Thus, understanding direct climate effects on our biosphere is far from enough for projecting intensifying global change impacts into the future.
-end-


Blackwell Publishing Ltd.

Related Water Articles from Brightsurf:

Transport of water to mars' upper atmosphere dominates planet's water loss to space
Instead of its scarce atmospheric water being confined in Mars' lower atmosphere, a new study finds evidence that water on Mars is directly transported to the upper atmosphere, where it is converted to atomic hydrogen that escapes to space.

Water striders learn from experience how to jump up safely from water surface
Water striders jump upwards from the water surface without breaking it.

'Pregnancy test for water' delivers fast, easy results on water quality
A new platform technology can assess water safety and quality with just a single drop and a few minutes.

Something in the water
Between 2015 and 2016, Brazil suffered from an epidemic outbreak of the Zika virus, whose infections occurred throughout the country states.

Researchers create new tools to monitor water quality, measure water insecurity
A wife-husband team will present both high-tech and low-tech solutions for improving water security at this year's American Association for the Advancement of Science (AAAS) annual meeting in Seattle on Sunday, Feb.

The shape of water: What water molecules look like on the surface of materials
Water is a familiar substance that is present virtually everywhere.

Water, water everywhere -- and it's weirder than you think
Researchers at The University of Tokyo show that liquid water has 2 distinct molecular arrangements: tetrahedral and non-tetrahedral.

What's in your water?
Mixing drinking water with chlorine, the United States' most common method of disinfecting drinking water, creates previously unidentified toxic byproducts, says Carsten Prasse from Johns Hopkins University and his collaborators from the University of California, Berkeley and Switzerland.

How we transport water in our bodies inspires new water filtration method
A multidisciplinary group of engineers and scientists has discovered a new method for water filtration that could have implications for a variety of technologies, such as desalination plants, breathable and protective fabrics, and carbon capture in gas separations.

Source water key to bacterial water safety in remote Northern Australia
In the wet-dry topics of Australia, drinking water in remote communities is often sourced from groundwater bores.

Read More: Water News and Water Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.