Columbia research lifts major hurdle to gene therapy for cancer

January 25, 2005

Researchers at Columbia University Medical Center have discovered a way to overcome one of the major hurdles in gene therapy for cancer: its tendency to kill normal cells in the process of eradicating cancer cells.

In a new study published in the Jan. 25 issue of the Proceedings of the National Academy of Sciences (PNAS), the researchers demonstrated that the technique works by incorporating it into a specially designed virus. The virus eradicated prostate cancer cells in the lab and in animals while leaving normal cells unscathed.

Gene therapy based on the new technique should also be effective for a wide range of tumors - such as ovarian, breast, brain (glioma), skin (melanoma) and colon cancer - because the virus is constructed to exploit a characteristic of all solid cancers.

"What's exciting is we may now be able to design a therapy that will seek out and destroy only cancer cells," said the study's senior author, Paul B. Fisher, Ph.D., professor of clinical pathology and Michael and Stella Chernow Urological Cancer Research Scientist at Columbia University Medical Center. "We hope it will be particularly powerful in eradicating metastases that we can't see and that can't be eliminated by surgery or radiation. Gene therapy, especially for cancer, is really starting to make a comeback."

The virus's selectivity for cancer cells is based on two molecules called PEA-3 and AP-1 that, the researchers found, are usually abundant inside cancer cells. Both of the molecules flip a switch (called PEG) that turns on the production of a cancer-inhibiting protein uniquely in tumor cells.

The researchers say the PEG switch can be exploited to produce gene therapies that will only kill cancer cells even if the therapy enters normal cells.

As an example, the researchers constructed an adenovirus that carries the PEG switch and a toxic protein. The switch and the protein were connected to each other so that the deadly protein is only unleashed inside cancer cells when the switch is flipped on by PEA-3 or AP-1.

When added to a mix of normal and prostrate cancer cells, the virus entered both but only produced the toxic protein inside the cancer cells. All the prostrate cancer cells died while the normal cells were unaffected.

The same virus also selectively killed human cancer cells from melanoma and ovarian, breast, and glioma (brain) tumors.

Dr. Fisher's team is now altering the virus and developing additional viruses based on the PEG switch for use in clinical trials with patients. Other investigators associated with the PNAS study include Drs. Zao-zhong Su (research scientist), Devanand Sarkar (associate research scientist) and Luni Emdad (postdoctoral research scientist) in Dr. Fisher's group; Drs. Gregory J. Duigou (associate research scientist) and C. S. Hamish Young (professor) in the Department of Microbiology (Columbia University Medical Center); and Dr. Joy Ware (professor), Mr. Aaron Randolph (graduate student) and Dr. Kristoffer Valerie (professor) at Virginia Commonwealth University, Richmond, VA.
-end-
Columbia University Medical Center provides international leadership in basic, pre-clinical and clinical research, medical education, and health care. The medical center trains future leaders in health care and includes the dedicated work of many physicians, scientists, nurses, dentists, and other health professionals at the College of Physicians & Surgeons, the School of Dental & Oral Surgery, the School of Nursing, the Mailman School of Public Health, the biomedical departments of the Graduate School of Arts and Sciences, and allied research centers and institutions. With a strong history of some of the most important advances and discoveries in health care, its researchers are leading the development of novel therapies and advances to address a wide range of health conditions.

Columbia University Medical Center

Related Cancer Articles from Brightsurf:

New blood cancer treatment works by selectively interfering with cancer cell signalling
University of Alberta scientists have identified the mechanism of action behind a new type of precision cancer drug for blood cancers that is set for human trials, according to research published in Nature Communications.

UCI researchers uncover cancer cell vulnerabilities; may lead to better cancer therapies
A new University of California, Irvine-led study reveals a protein responsible for genetic changes resulting in a variety of cancers, may also be the key to more effective, targeted cancer therapy.

Breast cancer treatment costs highest among young women with metastic cancer
In a fight for their lives, young women, age 18-44, spend double the amount of older women to survive metastatic breast cancer, according to a large statewide study by the University of North Carolina at Chapel Hill.

Cancer mortality continues steady decline, driven by progress against lung cancer
The cancer death rate declined by 29% from 1991 to 2017, including a 2.2% drop from 2016 to 2017, the largest single-year drop in cancer mortality ever reported.

Stress in cervical cancer patients associated with higher risk of cancer-specific mortality
Psychological stress was associated with a higher risk of cancer-specific mortality in women diagnosed with cervical cancer.

Cancer-sniffing dogs 97% accurate in identifying lung cancer, according to study in JAOA
The next step will be to further fractionate the samples based on chemical and physical properties, presenting them back to the dogs until the specific biomarkers for each cancer are identified.

Moffitt Cancer Center researchers identify one way T cell function may fail in cancer
Moffitt Cancer Center researchers have discovered a mechanism by which one type of immune cell, CD8+ T cells, can become dysfunctional, impeding its ability to seek and kill cancer cells.

More cancer survivors, fewer cancer specialists point to challenge in meeting care needs
An aging population, a growing number of cancer survivors, and a projected shortage of cancer care providers will result in a challenge in delivering the care for cancer survivors in the United States if systemic changes are not made.

New cancer vaccine platform a potential tool for efficacious targeted cancer therapy
Researchers at the University of Helsinki have discovered a solution in the form of a cancer vaccine platform for improving the efficacy of oncolytic viruses used in cancer treatment.

American Cancer Society outlines blueprint for cancer control in the 21st century
The American Cancer Society is outlining its vision for cancer control in the decades ahead in a series of articles that forms the basis of a national cancer control plan.

Read More: Cancer News and Cancer Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.