Researchers discover method to unravel malaria's genetic secrets

January 25, 2012

The parasite that causes malaria is a genetic outlier, which has prevented scientists from discovering the functions of most of its genes. Researchers at National Jewish Health and Yale University School of Medicine have devised a technique to overcome the genetic oddity of Plasmodium falciparum, the major cause of human malaria. This new approach led them discover a new gene involved in lipid synthesis, and opens the door to further genetic discovery for the entire organism. This should foster a much greater understanding of the parasite, and facilitate discovery of new medications for a disease that infects more than 200 million people and kills nearly 700,000 every year.

"The malarial genome has been a black box. Our technique allows us to open that box, so that we can learn what genes in the most lethal human parasite actually do," said Dennis Voelker, PhD, Professor of Medicine at National Jewish Health and senior author on the paper that appeared in the January 2, 2012 , issue of the Journal of Biological Chemistry. "This could prove tremendously valuable in the fight against a disease that has become increasingly drug-resistant."

The genome of P. falciparum was sequenced in 2002, but the actual functions of many of the organism's genes have remained elusive. One of the primary methods for discovering gene function is to copy a specific gene, insert it into a model organism that is easy to grow, often the yeast Saccharomyces cerevisiae, then draw on the incredible knowledge base about yeast and its abundant genetic variants to discover how that inserted gene changes the organism's biology.

DNA is composed of building blocks with the shorthand designations A,T,C and G. The genome of P. falciparum is odd because it is particularly rich in A's and T's. Because of this A-T-rich nature, P. falciparum genes generally do not function when they are inserted into other organisms. As a result, scientists have been largely stymied when trying to understand the functions of P. falciparum's genes.

It turns out, however, that P. falciparum has a close cousin, P. knowlesi, which shares almost all its genes with P. falciparum, but with fewer A's and T's. As a result, P. knowlesi genes function well when inserted into yeast. Scientists can now insert P. knowlesi genes into yeast, discover their function, and then match them to corresponding genes in P. falciparum, which reveals the function of the malarial parasite's genes.

"This technique could lead to an explosion in knowledge about malaria and the parasite that causes it." said Dr. Voelker.

The researchers used the technique to discover a new gene involved in the synthesis of lipids in cell membranes of P. falciparum. The gene, phosphatidylserine decarboxylase, directs the formation of a protein unique to malarial parasites and is a potential therapeutic target. For example, selective disruption of lipid synthesis in P. falciparum, would prevent the organism from making new cell membranes, growing and reproducing in human hosts.
-end-


National Jewish Health

Related Malaria Articles from Brightsurf:

Clocking in with malaria parasites
Discovery of a malaria parasite's internal clock could lead to new treatment strategies.

Breakthrough in malaria research
An international scientific consortium led by the cell biologists Volker Heussler from the University of Bern and Oliver Billker from the UmeƄ University in Sweden has for the first time systematically investigated the genome of the malaria parasite Plasmodium throughout its life cycle in a large-scale experiment.

Scientists close in on malaria vaccine
Scientists have taken another big step forward towards developing a vaccine that's effective against the most severe forms of malaria.

New tool in fight against malaria
Modifying a class of molecules originally developed to treat the skin disease psoriasis could lead to a new malaria drug that is effective against malaria parasites resistant to currently available drugs.

Malaria expert warns of need for malaria drug to treat severe cases in US
The US each year sees more than 1,500 cases of malaria, and currently there is limited access to an intravenously administered (IV) drug needed for the more serious cases.

Monkey malaria breakthrough offers cure for relapsing malaria
A breakthrough in monkey malaria research by two University of Otago scientists could help scientists diagnose and treat a relapsing form of human malaria.

Getting to zero malaria cases in zanzibar
New research led by the Johns Hopkins Center for Communication Programs, Ifakara Health Institute and the Zanzibar Malaria Elimination Program suggests that a better understanding of human behavior at night -- when malaria mosquitoes are biting -- could be key to preventing lingering cases.

Widely used malaria treatment to prevent malaria in pregnant women
A global team of researchers, led by a research team at the Liverpool School of Tropical Medicine (LSTM), are calling for a review of drug-based strategies used to prevent malaria infections in pregnant women, in areas where there is widespread resistance to existing antimalarial medicines.

Protection against Malaria: A matter of balance
A balanced production of pro and anti-inflammatory cytokines at two years of age protects against clinical malaria in early childhood, according to a study led by ISGlobal, an institution supported by ''la Caixa'' Foundation.

The math of malaria
A new mathematical model for malaria shows how competition between parasite strains within a human host reduces the odds of drug resistance developing in a high-transmission setting.

Read More: Malaria News and Malaria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.