Evolution inspires more efficient solar cell design

January 25, 2013

The sun's energy is virtually limitless, but harnessing its electricity with today's single-crystal silicon solar cells is extremely expensive -- 10 times pricier than coal, according to some estimates. Organic solar cells -- polymer solar cells that use organic materials to absorb light and convert it into electricity -- could be a solution, but current designs suffer because polymers have less-than-optimal electrical properties.

Researchers at Northwestern University have now developed a new design for organic solar cells that could lead to more efficient, less expensive solar power. Instead of attempting to increase efficiency by altering the thickness of the solar cell's polymer layer -- a tactic that has preciously garnered mixed results -- the researchers sought to design the geometric pattern of the scattering layer to maximize the amount of time light remained trapped within the cell.

Using a mathematical search algorithm based on natural evolution, the researchers pinpointed a specific geometrical pattern that is optimal for capturing and holding light in thin-cell organic solar cells.

The resulting design exhibited a three-fold increase over the Yablonovitch Limit, a thermodynamic limit developed in the 1980s that statistically describes how long a photon can be trapped in a semiconductor.

A paper about the results, "Highly Efficient Light-Trapping Structure Design Inspired by Natural Evolution," was published January 3 in Scientific Reports, a publication of Nature.

In the newly designed organic solar cell, light first enters a 100-nanometer-thick "scattering layer," a geometrically-patterned dielectric layer designed to maximize the amount of light transmitted into the cell. The light is then transmitted to the active layer, where it is converted into electricity.

"We wanted to determine the geometry for the scattering layer that would give us optimal performance," said Cheng Sun, assistant professor of mechanical engineering in Northwestern's McCormick School of Engineering and Applied Science and co-author of the paper. "But with so many possibilities, it's difficult to know where to start, so we looked to laws of natural selection to guide us."

The researchers employed a genetic algorithm, a search process that mimics the process of natural evolution, explained Wei Chen, Wilson-Cook Professor in Engineering Design and professor of mechanical engineering at McCormick and co-investigator of the research.

"Due to the highly nonlinear and irregular behavior of the system, you must use an intelligent approach to find the optimal solution," Chen said. "Our approach is based on the biologically evolutionary process of survival of the fittest."

The researchers began with dozens of random design elements, then "mated" and analyzed their offspring to determine their particular light-trapping performance. This process was carried out over more than 20 generations and also accounted for evolutionary principles of crossover and genetic mutation.

The resulting pattern will be fabricated with partners at Argonne National Laboratory.
-end-
Also co-authoring the paper were co-lead authors Chen Wang and Shuangcheng Yu, graduate students in McCormick's Department of Mechanical Engineering.

Northwestern University

Related Natural Selection Articles from Brightsurf:

Genetic determinants of fertility and ongoing natural selection in humans
A recent study presented at the ASHG 2020 Virtual Meeting suggests genetic variants may be associated with reproductive success.

Forearm artery reveals humans evolving from changes in natural selection
Humans haven't developed genetic mutations for telepathy or superpowers just yet, but a new study shows our species is still evolving in unique ways and changes in the natural selection could be the major reason.

Novel technology for the selection of single photosynthetic cells
New research, published in the journal Science Advances, demonstrates how microfluidic technologies can be used to identify, isolate and propagate specific single photosynthetically active cells for fundamental industry applications and improved ecosystem understanding.

Genomic selection in dairy cows creates opportunities not possible with traditional selection
The 2019 ADSA Annual Meeting featured the Joint ADSA/Interbull Breeding and Genetics Symposia titled ''Ten Years of Genomic Selection'' and ''Data Pipelines for Implementation of Genomic Evaluation of Novel Traits.'' Because of genomic selection's importance to dairy science, the Journal of Dairy Science invited the speakers to submit articles and share information from these symposia with a wider audience.

Recurrent genomic selection for wheat grain fructans
Development of Climate-Resilient, Nutritionally Improved Wheat

NASA's OSIRIS-REx in the midst of site selection
After a lengthy and challenging process, the team is finally ready to down-select from the four candidate sites to a primary and backup site.

The argument for sexual selection in bacteria
The evolutionary pressure to pass on DNA can produce behavior that otherwise makes no sense in a struggle to survive.

Sexual selection influences the evolution of lamprey pheromones
In 'Intra- and Interspecific Variation in Production of Bile Acids that Act As Sex Pheromones in Lampreys,' published in Physiological and Biochemical Zoology, Tyler J.

Infection biology: Signs of selection in the stomach
Helicobacter pylori, a globally distributed gastric bacterium, is genetically highly adaptable.

Study finds natural selection favors cheaters
Natural selection predicts that mutualisms -- interactions between members of different species that benefit both parties -- should fall apart.

Read More: Natural Selection News and Natural Selection Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.