Highly organized structures discovered in microbial communities with MBL imaging approach

January 25, 2016

WOODS HOLE, Mass.--Bacteria usually live in mixed communities with many different kinds of bacteria present. But it's been largely unknown how these communities are organized, because the technology didn't exist to see how they are structured in space.

This week, for the first time, scientists describe distinct bacterial assemblages living in dental plaque, which they discovered using a novel imaging approach that "cuts through the overwhelming complexity of detail in microbial communities and allows common patterns to shine through." The study appears in Proceedings of the National Academy of Sciences and was led by Jessica Mark Welch of the Marine Biological Laboratory (MBL), Woods Hole, and Gary Borisy of the Forsyth Institute, Cambridge.

Plaque on teeth, the team discovered, contains micron-scaled "hedgehog" structures in which eight different kinds of bacteria are radially arranged around a ninth kind, filamentous Corynebacteria. Seeing these structures offers scientists valuable information on how the bacterial members function that can't be gleaned from genomic analysis, which specifies what microbes are present in a community, but not how they are organized.

"Microbes behave very differently depending on where they are and who they are next to," Mark Welch says. "They will secrete entirely different sets of chemicals and metabolites depending on who their microbial neighbors are. So, if we want to accurately describe what these microbes are doing - really, what they are - we need to know where they are."

The team proposes a model for how dental plaque develops, which is based on their imaging observations combined with plaque sequencing data from the Human Microbiome Project.

"This is a really exciting new way to look at microbial communities," Mark Welch says of the spectral fluorescence imaging approach they developed at MBL. "The degree of organization we found in the hedgehog structure was amazing, as was the repeated finding of the same structure in different individuals. This finding that bacteria can develop such a degree of spatial organization may be generalizable to other microbiomes. We just have to go look."
-end-
Citation:

Mark Welch JL, Rossetti BJ, Rieken CW, Dewhirst FE, and Borisy GG (2016) Biogeography of a Human Oral Microbiome at the Micron Scale. PNAS doi/10.1073/pnas.1522149113The Marine Biological Laboratory (MBL) is dedicated to scientific discovery - exploring fundamental biology, understanding biodiversity and the environment, and informing the human condition through research and education. Founded in Woods Hole, Massachusetts in 1888, the MBL is a private, nonprofit institution and an affiliate of the University of Chicago.

Marine Biological Laboratory

Related Bacteria Articles from Brightsurf:

Siblings can also differ from one another in bacteria
A research team from the University of Tübingen and the German Center for Infection Research (DZIF) is investigating how pathogens influence the immune response of their host with genetic variation.

How bacteria fertilize soya
Soya and clover have their very own fertiliser factories in their roots, where bacteria manufacture ammonium, which is crucial for plant growth.

Bacteria might help other bacteria to tolerate antibiotics better
A new paper by the Dynamical Systems Biology lab at UPF shows that the response by bacteria to antibiotics may depend on other species of bacteria they live with, in such a way that some bacteria may make others more tolerant to antibiotics.

Two-faced bacteria
The gut microbiome, which is a collection of numerous beneficial bacteria species, is key to our overall well-being and good health.

Microcensus in bacteria
Bacillus subtilis can determine proportions of different groups within a mixed population.

Right beneath the skin we all have the same bacteria
In the dermis skin layer, the same bacteria are found across age and gender.

Bacteria must be 'stressed out' to divide
Bacterial cell division is controlled by both enzymatic activity and mechanical forces, which work together to control its timing and location, a new study from EPFL finds.

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.

The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?

Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.

Read More: Bacteria News and Bacteria Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.