Acid-sensitive molecular changes contribute to the emergence of pandemic influenza

January 25, 2016

St. Jude Children's Research Hospital scientists have identified a molecular property of the hemagglutinin protein that contributed to the emergence of the 2009 H1N1 pandemic influenza virus. The findings may help officials recognize and control flu viruses that pose the greatest risk to humans. The study appears today in the online, early edition of the scientific journal Proceedings of the National Academy of Sciences (PNAS).

Hemagglutinin is carried on the surface of the flu virus. The virus needs the protein for binding to and infecting host cells.

The researchers showed that hemagglutinin became more stable in an acidic environment as the H1N1 virus shifted from swine to humans. The adaptation increased the protein's stability in the acidic conditions of the human respiratory tract and lowered the pH at which hemagglutinin was activated. Activation triggers an irreversible change in the protein's molecular shape that fuses the virus and target cell.

Investigators demonstrated in the laboratory that the hemagglutinin adaption was essential for airborne viral transmission in ferrets, the animal model of the human disease. Mutating hemagglutinin to reduce the protein's stability in acid, and increase the pH of activation, blocked the virus' ability to spread through airborne particles.

"We have identified hemagglutinin acid stability as an essential property of pandemic viruses," said Charles Russell, Ph.D., an associate member of the St. Jude Department of Infectious Diseases who led the research. "These findings should aid pandemic preparedness by helping officials recognize and prioritize circulating animal viruses for surveillance, vaccine production and other measures."

The pH of activation differs for different flu viruses. Avian and swine viruses are activated at pH 5.5-6.0 compared to pH 5.0-5.5 for human flu viruses. Previous studies by Russell and others showed that changing the hemagglutinin to reduce the protein's stability in acid, and lower its pH of activation, led to transmission of avian flu viruses in mice and ferrets. Now researchers have linked such changes to a human pandemic virus.

In this study, researchers tracked the pH of activation in H1N1 swine flu viruses before and during the 2009 flu pandemic. Prior to the pandemic, H1N1 swine viruses were activated at pH 5.5-6.0. The H1N1 virus that infected humans early in the pandemic was activated at pH 5.5. In later cases, the activation pH of the H1N1 pandemic virus declined to 5.2-5.4.

"The hemagglutinin protein plays a central role in human flu pandemics, yet until now the molecular properties required for pandemic viruses have remained largely undefined," Russell said. "Our findings suggested that one requirement for a pandemic influenza A virus was an acid-stabilized protein with an activation pH of 5.5 or less, which was sufficient to allow airborne human-to-human transmission at the start of the 2009 H1N1 pandemic."

When scientists mutated the 2009 H1N1 pandemic virus to make it more like swine flu virus and give it a hemagglutinin with a higher activation pH, the virus caused less illness and spread more slowly in mice and ferrets.

The virus responded to the loss-of-function mutation by quickly altering hemagglutinin in the laboratory to a lower activation pH of 5.3. The spontaneous change restored airborne transmissibility of the virus in ferrets. An analysis of pandemic H1N1 samples collected from more than 21,000 human cases worldwide found a small number with the same H1 mutation.

"The hemagglutinin shape change that causes the membrane fusion and gets the viral genetic material into target cells is triggered by a drop in pH," Russell said. "The virus can be exposed to low pH in the mildly acidic upper respiratory tract of humans and other mammals. If hemagglutinin is too easy to trigger, it is like a mouse trap triggered prematurely, and the virus is inactivated before reaching the target cell."
-end-
Marion Russier, Ph.D., a postdoctoral fellow in Russell's laboratory, is the first author. The other authors are Guohua Yang, Jerold Rehg, Sook-San Wong, Heba Mostafa, Thomas Fabrizio, Subrata Barman, Scott Krauss, Robert Webster and Richard Webby, all of St. Jude.

The study was funded in part by a contract (HHSN272201400006C) from the National Institutes of Allergy and Infectious Diseases, part of the National Institutes of Health; and ALSAC.

St. Jude Children's Research Hospital

Related Pandemic Articles from Brightsurf:

Areas where the next pandemic could emerge are revealed
An international team of human- and animal health experts has incorporated environmental, social and economic considerations -- including air transit centrality - to identify key areas at risk of leading to the next pandemic.

Narcissists love being pandemic 'essential workers'
There's one group of essential workers who especially enjoy being called a ''hero'' during the COVID-19 pandemic: narcissists.

COVID-19: Air quality influences the pandemic
An interdisciplinary team from the University of Geneva and the ETH Z├╝rich spin-off Meteodat investigated possible interactions between acutely elevated levels of fine particulate matter and the virulence of the coronavirus disease.

People who purchased firearms during pandemic more likely to be suicidal
People who purchase a firearm during the pandemic are more likely to be suicidal than other firearm owners, according to a Rutgers study.

Measles outbreaks likely in wake of COVID-19 pandemic
Major measles outbreaks will likely occur during 2021 as an unexpected consequence of the COVID-19 pandemic, according to a new academic article.

The COVID-19 pandemic: How US universities responded
A new George Mason University study found that the majority of university announcements occurred on the same day as the World Health Organization's pandemic declaration.

Researchers find evidence of pandemic fatigue
A new study from the USC Leonard Davis School of Gerontology shows that the behavioral responses to COVID-19 differed by age.

Excessive alcohol consumption during the COVID-19 pandemic
The full impact of COVID-19 on alcohol use is not yet known, but rates have been rising during the first few months of the pandemic.

How fear encourages physical distancing during pandemic
Despite guidelines plastered on the walls and floors of grocery and retail stores encouraging customers to maintain six-feet of physical distance during the pandemic, many do not.

COVID-19 pandemic and $16 trillion virus
This Viewpoint aggregates mortality, morbidity, mental health conditions, and direct economic losses to estimate the total cost of the pandemic in the US on the optimistic assumption that it will be substantially contained by the fall of 2021.

Read More: Pandemic News and Pandemic Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.