Encapsulated human islet cells can normalize blood sugar levels in mice

January 25, 2016

For the first time ever, scientists studying a mouse model of diabetes have implanted encapsulated insulin-producing cells derived from human stem cells and maintained long-term control of blood sugar -- without administering immunosuppressant drugs.

The results of the multi-institutional effort are published in Nature Medicine.

People with type 1 diabetes have an overactive immune system that destroys the insulin-producing islet cells in the pancreas. Lacking that hormone, the body fails to convert sugars to usable energy, and glucose rises to harmful levels in the blood without daily insulin injections. Islet cells have been successfully transplanted to treat type 1 diabetes, but those patients must take immunosuppressant drugs to keep their immune system from destroying the transplanted cells.

Previous research had shown that rodent islet cells could normalize blood sugar levels in animal models without immunosuppression if the cells were encased in hydrogel capsules. The semi-porous capsules allow insulin to escape into the blood, while preventing the host's immune system from attacking the foreign cells. Larger capsules, about 1.5 millimeters across, even seemed able to avoid the buildup of scar tissue, which can choke off the cells' supply of oxygen and nutrients.

The new study, a collaboration led by scientists at the Massachusetts Institute of Technology and Boston Children's Hospital, used islet cells derived from human stem cells and capsules made of chemically-tweaked gel that are even more resistant to the build-up of scar tissue.

Dr. Jose Oberholzer, chief of transplantation surgery and director of cell and pancreas transplantation at the University of Illinois Hospital & Health Sciences System, professor of bioengineering at the University of Illinois at Chicago, and an author on the paper, tested several varieties of chemically-modified alginate hydrogel spheres -- in various sizes -- to see if any excelled at resisting scar-tissue formation. Oberholzer and his coworkers at the University of Illinois at Chicago first tested the spheres to ensure they would allow the islet cells to function inside a host. Using a special microfluidic device developed at UIC under a grant from the National Institute of Diabetes and Digestive and Kidney Diseases, they delivered minute amounts of glucose into tiny wells containing encapsulated islet cells and measured the amount of insulin that seeped out. They implanted spheres that showed promise into rodents and non-human primates to look for the development of scar tissue.

They found (and reported in the journal Nature Biotechnology) that 1.5-millimeter spheres of triazole-thiomorphine dioxide (TMTD) alginate were best at allowing insulin to escape while resisting immune response and the buildup of scar tissue.

When implanted into a mouse model of diabetes, TMTD-alginate spheres containing human islet cells were able to maintain proper blood glucose control for 174 days -- decades, in terms relative to the human lifespan.

"When we stopped the experiment and took the spheres out, they were virtually free of scar tissue," Oberholzer said.

"While this is a very promising step towards an eventual cure for diabetes, a lot more testing is needed to ensure that the islet cells don't de-differentiate back toward their stem-cell states or become cancerous," said Oberholzer. If the cells did become cancerous, he said, they could easily break through the spheres. Oberholzer also cautioned that a cure for human diabetes would require scientists to develop techniques to grow large numbers of human islet cells from stem cells -- a worthy goal.

"In the United States, there are 30 million cases of type 2 diabetes and about 2 million patients with type 1 diabetes who could potentially benefit from such a procedure," he said. "But we need to grow billions of islet cells."
-end-
Co-authors on the papers are James McGarrigle, Meirigeng Qi and Matthew Bochenek of UIC; Daniel Anderson, Arturo Vegas, Omid Veiseh, Andrew Bader, Joshua Doloff, Jie Li, Michael Chen, Karsten Olejnik, Hok Hei-Tam, Siddharth Jhunjhunwala, Erin Langan, Stephanie Aresta-Dasilva, Srujan Grandham, Minglin Ma, Kaitlin Bratlie, Patrick Fenton, Alan Chiu, Sean Siebert, Katherine Tang, Nimit Dholakia, Raj Thakrar, Thema Vietti, Michael Chen, Jeon Woong Kang and Robert Langer of MIT and Boston Children's Hospital; Douglas Melton, Mads Gurtler, Jeffrey Millman and Felicia Pagliuca of Harvard University; Jennifer Hollister-Lock, Josh Cohen, Karolina Siniakowicz and Gordon Weir of the Joslin Diabetes Center; and Dale Greiner, Stephen Lyle and David Harlan of the University of Massachusetts Medical School.

This work was supported in part by the JDRF and Leona M. and the Harry B. Helmsley Charitable Trust (Grant 3-SRA-2014-285-M-R), National Institutes of Health grants EB000244, EB000351, DE013023 CA151884, UC4DK104218, P41EB015871-27, R01DK091526, the MIT SkolTech initiative, the Tayebati Family Foundation, the Chicago Diabetes Project, and Koch Institute support grant P30-CA14051 from the National Cancer Institute.

University of Illinois at Chicago

Related Diabetes Articles from Brightsurf:

New diabetes medication reduced heart event risk in those with diabetes and kidney disease
Sotagliflozin - a type of medication known as an SGLT2 inhibitor primarily prescribed for Type 2 diabetes - reduces the risk of adverse cardiovascular events for patients with diabetes and kidney disease.

Diabetes drug boosts survival in patients with type 2 diabetes and COVID-19 pneumonia
Sitagliptin, a drug to lower blood sugar in type 2 diabetes, also improves survival in diabetic patients hospitalized with COVID-19, suggests a multicenter observational study in Italy.

Making sense of diabetes
Throughout her 38-year nursing career, Laurel Despins has progressed from a bedside nurse to a clinical nurse specialist and has worked in medical, surgical and cardiac intensive care units.

Helping teens with type 1 diabetes improve diabetes control with MyDiaText
Adolescence is a difficult period of development, made more complex for those with Type 1 diabetes mellitus (T1DM).

Diabetes-in-a-dish model uncovers new insights into the cause of type 2 diabetes
Researchers have developed a novel 'disease-in-a-dish' model to study the basic molecular factors that lead to the development of type 2 diabetes, uncovering the potential existence of major signaling defects both inside and outside of the classical insulin signaling cascade, and providing new perspectives on the mechanisms behind insulin resistance in type 2 diabetes and possibly opportunities for the development of novel therapeutics for the disease.

Tele-diabetes to manage new-onset diabetes during COVID-19 pandemic
Two new case studies highlight the use of tele-diabetes to manage new-onset type 1 diabetes in an adult and an infant during the COVID-19 pandemic.

Genetic profile may predict type 2 diabetes risk among women with gestational diabetes
Women who go on to develop type 2 diabetes after having gestational, or pregnancy-related, diabetes are more likely to have particular genetic profiles, suggests an analysis by researchers at the National Institutes of Health and other institutions.

Maternal gestational diabetes linked to diabetes in children
Children and youth of mothers who had gestational diabetes during pregnancy are at increased risk of diabetes themselves, according to new research published in CMAJ (Canadian Medical Association Journal).

Two diabetes medications don't slow progression of type 2 diabetes in youth
In youth with impaired glucose tolerance or recent-onset type 2 diabetes, neither initial treatment with long-acting insulin followed by the drug metformin, nor metformin alone preserved the body's ability to make insulin, according to results published online June 25 in Diabetes Care.

People with diabetes visit the dentist less frequently despite link between diabetes, oral health
Adults with diabetes are less likely to visit the dentist than people with prediabetes or without diabetes, finds a new study led by researchers at NYU Rory Meyers College of Nursing and East Carolina University's Brody School of Medicine.

Read More: Diabetes News and Diabetes Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.