Nanoparticle fertilizer could contribute to new 'green revolution'

January 25, 2017

The "Green Revolution" of the '60s and '70s has been credited with helping to feed billions around the world, with fertilizers being one of the key drivers spurring the agricultural boom. But in developing countries, the cost of fertilizer remains relatively high and can limit food production. Now researchers report in the journal ACS Nano a simple way to make a benign, more efficient fertilizer that could contribute to a second food revolution.

Farmers often use urea, a rich source of nitrogen, as fertilizer. Its flaw, however, is that it breaks down quickly in wet soil and forms ammonia. The ammonia is washed away, creating a major environmental issue as it leads to eutrophication of water ways and ultimately enters the atmosphere as nitrogen dioxide, the main greenhouse gas associated with agriculture. This fast decomposition also limits the amount of nitrogen that can get absorbed by crop roots and requires farmers to apply more fertilizer to boost production. However, in low-income regions where populations continue to grow and the food supply is unstable, the cost of fertilizer can hinder additional applications and cripple crop yields. Nilwala Kottegoda, Veranja Karunaratne, Gehan Amaratunga and colleagues wanted to find a way to slow the breakdown of urea and make one application of fertilizer last longer.

To do this, the researchers developed a simple and scalable method for coating hydroxyapatite (HA) nanoparticles with urea molecules. HA is a mineral found in human and animal tissues and is considered to be environmentally friendly. In water, the hybridization of the HA nanoparticles and urea slowly released nitrogen, 12 times slower than urea by itself. Initial field tests on rice farms showed that the HA-urea nanohybrid lowered the need for fertilizer by one-half. The researchers say their development could help contribute to a new green revolution to help feed the world's continuously growing population and also improve the environmental sustainability of agriculture.
-end-
The authors acknowledge funding from Hayleys Agriculture Holdings Limited and Nagarjuna Fertilizers and Chemicals Limited.

The paper's abstract will be available on Jan. 25 here: http://pubs.acs.org/doi/abs/10.1021/acsnano.6b07781

The American Chemical Society is a nonprofit organization chartered by the U.S. Congress. With nearly 157,000 members, ACS is the world's largest scientific society and a global leader in providing access to chemistry-related research through its multiple databases, peer-reviewed journals and scientific conferences. ACS does not conduct research, but publishes and publicizes peer-reviewed scientific studies. Its main offices are in Washington, D.C., and Columbus, Ohio.

To automatically receive press releases from ACS, contact newsroom@acs.org.

Follow us: Twitter | FacebookIf you are a member of the press and are unable to access the paper on the ACS website, please email newsroom@acs.org with a request.

American Chemical Society

Related Nanoparticles Articles from Brightsurf:

An ionic forcefield for nanoparticles
Nanoparticles are promising drug delivery tools but they struggle to get past the immune system's first line of defense: proteins in the blood serum that tag potential invaders.

Phytoplankton disturbed by nanoparticles
Products derived from nanotechnology are efficient and highly sought-after, yet their effects on the environment are still poorly understood.

How to get more cancer-fighting nanoparticles to where they are needed
University of Toronto Engineering researchers have discovered a dose threshold that greatly increases the delivery of cancer-fighting drugs into a tumour.

Nanoparticles: Acidic alert
Researchers of Ludwig-Maximilians-Universitaet (LMU) in Munich have synthesized nanoparticles that can be induced by a change in pH to release a deadly dose of ionized iron within cells.

3D reconstructions of individual nanoparticles
Want to find out how to design and build materials atom by atom?

Directing nanoparticles straight to tumors
Modern anticancer therapies aim to attack tumor cells while sparing healthy tissue.

Sweet nanoparticles trick kidney
Researchers engineer tiny particles with sugar molecules to prevent side effect in cancer therapy.

A megalibrary of nanoparticles
Using straightforward chemistry and a mix-and-match, modular strategy, researchers have developed a simple approach that could produce over 65,000 different types of complex nanoparticles.

Dialing up the heat on nanoparticles
Rapid progress in the field of metallic nanotechnology is sparking a science revolution that is likely to impact all areas of society, according to professor of physics Ventsislav Valev and his team at the University of Bath in the UK.

Illuminating the world of nanoparticles
Scientists at the Okinawa Institute of Science and Technology Graduate University (OIST) have developed a light-based device that can act as a biosensor, detecting biological substances in materials; for example, harmful pathogens in food samples.

Read More: Nanoparticles News and Nanoparticles Current Events
Brightsurf.com is a participant in the Amazon Services LLC Associates Program, an affiliate advertising program designed to provide a means for sites to earn advertising fees by advertising and linking to Amazon.com.