Nav: Home

The power of wind energy and how to use it

January 25, 2017

Wind offers an immense, never ending source of energy that can be successfully harnessed to power all of the things that currently draw energy from non-renewable resources. The wind doesn't always blow, though.

Researchers from North China Electric Power University and North China University of Science and Technology recently developed a model to help predict wind frequency and potential contributions to more traditional energy sources. The scientists published their paper in IEEE/CAA Journal of Automatica Sinica (JAS).

"Reliable load frequency control is crucial to the operation and design of modern electric power systems," wrote Yi Zhang, a doctoral student at the North China Electric Power University and an author on the paper. "Due to the randomness and intermittence of the wind power, the controllability and availability of wind power significantly differs from conventional power generation."

Their method is based on "Model Predictive Control," wherein checkpoints across a power grid can exchange information and adjust accordingly. The researchers decentralized this model, so that a problem in one area could be solved to benefit the entire grid. The computer algorithm predicts the variables that influence the grid (demand, supply, etcetera) and applies those constraints for any problem that any part of the system might encounter.

A traditionally controlled grid could, for example, redirect otherwise unused energy from sleeping citizens to a power-hungry hospital or some other entity that continues to require energy even during typical off times. In a decentralized system, like the one modeled by Zhang and her colleagues, the system works the same way, but instead of having to clear the redirection with every checkpoint, the variables are assumed and the action is nearly immediate.

To test their algorithm, the researchers compared the volume output and dependability of a four-part system - four plants sharing responsibility for generating power in different areas - with and without the incorporation of wind power.

In the analysis of a conventional power plant, the researchers found that their model required much less computational time compared to the traditional Model Predictive Control. That's a major advantage, as the computing process is expensive in both time and energy.

When the researchers added the hard-to-predict wind turbines as a source of power in the model, it still worked as well. According to the scientists, the major flaw is that computational needs will increase to maintain system stability, which cannot be guaranteed in their algorithm.

"Our future work is focused on [pursuing] the implementation of [our algorithm] with guaranteeing stability and feasibility while reducing the computation and communication requirements," Zhang wrote.
Fulltext of the paper is available:

IEEE/CAA Journal of Automatica Sinica (JAS) is a joint publication of the Institute of Electrical and Electronics Engineers, Inc (IEEE) and the Chinese Association of Automation. JAS publishes papers on original theoretical and experimental research and development in all areas of automation. The coverage of JAS includes but is not limited to: Automatic control/Artificial intelligence and intelligent control/Systems theory and engineering/Pattern recognition and intelligent systems/Automation engineering and applications/Information processing and information systems/Network based automation/Robotics/Computer-aided technologies for automation systems/Sensing and measurement/Navigation, guidance, and control.

To learn more about JAS, please visit:

Chinese Association of Automation

Related Algorithm Articles:

Algorithm personalizes which cancer mutations are best targets for immunotherapy
As tumor cells multiply, they often spawn tens of thousands of genetic mutations.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
Algorithm tells robots where nearby humans are headed
A new tool for predicting a person's movement trajectory may help humans and robots work together in close proximity.
Algorithm to transform investment banking with higher returns
A University of Bath researcher has created an algorithm which aims to remove the elements of chance, bias or emotion from investment banking decisions, a development which has the potential to reduce errors in financial decision making and improve financial returns in global markets.
Algorithm provides customized caffeine strategy for alertness
A web-based caffeine optimization tool successfully designs effective strategies to maximize alertness while avoiding excessive caffeine consumption, according to preliminary results from a new study.
New algorithm optimizes quantum computing problem-solving
Tohoku University researchers have developed an algorithm that enhances the ability of a Canadian-designed quantum computer to more efficiently find the best solution for complicated problems, according to a study published in the journal Scientific Reports.
Machine learning algorithm helps in the search for new drugs
Researchers have designed a machine learning algorithm for drug discovery which has been shown to be twice as efficient as the industry standard, which could accelerate the process of developing new treatments for disease.
Researchers create algorithm to predict PEDV outbreaks
Researchers from North Carolina State University have developed an algorithm that could give pig farms advance notice of porcine epidemic diarrhea virus (PEDV) outbreaks.
New algorithm provides a more detailed look at urban heat islands
Urban areas are warmer than the adjacent undeveloped land, a phenomenon known as the urban heat island effect.
More Algorithm News and Algorithm Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.