Nav: Home

The power of wind energy and how to use it

January 25, 2017

Wind offers an immense, never ending source of energy that can be successfully harnessed to power all of the things that currently draw energy from non-renewable resources. The wind doesn't always blow, though.

Researchers from North China Electric Power University and North China University of Science and Technology recently developed a model to help predict wind frequency and potential contributions to more traditional energy sources. The scientists published their paper in IEEE/CAA Journal of Automatica Sinica (JAS).

"Reliable load frequency control is crucial to the operation and design of modern electric power systems," wrote Yi Zhang, a doctoral student at the North China Electric Power University and an author on the paper. "Due to the randomness and intermittence of the wind power, the controllability and availability of wind power significantly differs from conventional power generation."

Their method is based on "Model Predictive Control," wherein checkpoints across a power grid can exchange information and adjust accordingly. The researchers decentralized this model, so that a problem in one area could be solved to benefit the entire grid. The computer algorithm predicts the variables that influence the grid (demand, supply, etcetera) and applies those constraints for any problem that any part of the system might encounter.

A traditionally controlled grid could, for example, redirect otherwise unused energy from sleeping citizens to a power-hungry hospital or some other entity that continues to require energy even during typical off times. In a decentralized system, like the one modeled by Zhang and her colleagues, the system works the same way, but instead of having to clear the redirection with every checkpoint, the variables are assumed and the action is nearly immediate.

To test their algorithm, the researchers compared the volume output and dependability of a four-part system - four plants sharing responsibility for generating power in different areas - with and without the incorporation of wind power.

In the analysis of a conventional power plant, the researchers found that their model required much less computational time compared to the traditional Model Predictive Control. That's a major advantage, as the computing process is expensive in both time and energy.

When the researchers added the hard-to-predict wind turbines as a source of power in the model, it still worked as well. According to the scientists, the major flaw is that computational needs will increase to maintain system stability, which cannot be guaranteed in their algorithm.

"Our future work is focused on [pursuing] the implementation of [our algorithm] with guaranteeing stability and feasibility while reducing the computation and communication requirements," Zhang wrote.
-end-
Fulltext of the paper is available: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=7815559

IEEE/CAA Journal of Automatica Sinica (JAS) is a joint publication of the Institute of Electrical and Electronics Engineers, Inc (IEEE) and the Chinese Association of Automation. JAS publishes papers on original theoretical and experimental research and development in all areas of automation. The coverage of JAS includes but is not limited to: Automatic control/Artificial intelligence and intelligent control/Systems theory and engineering/Pattern recognition and intelligent systems/Automation engineering and applications/Information processing and information systems/Network based automation/Robotics/Computer-aided technologies for automation systems/Sensing and measurement/Navigation, guidance, and control.

To learn more about JAS, please visit: http://ieeexplore.ieee.org/xpl/RecentIssue.jsp?punumber=6570654

http://www.ieee-jas.org

Chinese Association of Automation

Related Algorithm Articles:

New algorithm to help process biological images
Skoltech researchers have presented a new biological image processing method that accurately picks out specific biological objects in complex images.
Skoltech scientists break Google's quantum algorithm
In the near term, Google has devised new quantum enhanced algorithms that operate in the presence of realistic noise.
The most human algorithm
A team from the research group SEES:lab of the Department of Chemical Engineering of the Universitat Rovira I Virgili and ICREA has made a breakthrough with the development of a new algorithm that makes more accurate predictions and generates mathematical models that also make it possible to understand these predictions.
Algorithm turns cancer gene discovery on its head
Prediction method could help personalize cancer treatments and reveal new drug targets.
New algorithm predicts gestational diabetes
Timely prediction may help prevent the condition using nutritional and lifestyle changes.
New algorithm could mean more efficient, accurate equipment for Army
Researchers working on an Army-funded project have developed an algorithm to simulate how electromagnetic waves interact with materials in devices to create equipment more efficiently and accurately.
Universal algorithm set to boost microscopes
EPFL scientists have developed an algorithm that can determine whether a super-resolution microscope is operating at maximum resolution based on a single image.
Algorithm designed to map universe, solve mysteries
Cornell University researchers have developed an algorithm designed to visualize models of the universe in order to solve some of physics' greatest mysteries.
Algorithm tells robots where nearby humans are headed
A new tool for predicting a person's movement trajectory may help humans and robots work together in close proximity.
Algorithm to transform investment banking with higher returns
A University of Bath researcher has created an algorithm which aims to remove the elements of chance, bias or emotion from investment banking decisions, a development which has the potential to reduce errors in financial decision making and improve financial returns in global markets.
More Algorithm News and Algorithm Current Events

Trending Science News

Current Coronavirus (COVID-19) News

Top Science Podcasts

We have hand picked the top science podcasts of 2020.
Now Playing: TED Radio Hour

Climate Mindset
In the past few months, human beings have come together to fight a global threat. This hour, TED speakers explore how our response can be the catalyst to fight another global crisis: climate change. Guests include political strategist Tom Rivett-Carnac, diplomat Christiana Figueres, climate justice activist Xiye Bastida, and writer, illustrator, and artist Oliver Jeffers.
Now Playing: Science for the People

#562 Superbug to Bedside
By now we're all good and scared about antibiotic resistance, one of the many things coming to get us all. But there's good news, sort of. News antibiotics are coming out! How do they get tested? What does that kind of a trial look like and how does it happen? Host Bethany Brookeshire talks with Matt McCarthy, author of "Superbugs: The Race to Stop an Epidemic", about the ins and outs of testing a new antibiotic in the hospital.
Now Playing: Radiolab

Speedy Beet
There are few musical moments more well-worn than the first four notes of Beethoven's Fifth Symphony. But in this short, we find out that Beethoven might have made a last-ditch effort to keep his music from ever feeling familiar, to keep pushing his listeners to a kind of psychological limit. Big thanks to our Brooklyn Philharmonic musicians: Deborah Buck and Suzy Perelman on violin, Arash Amini on cello, and Ah Ling Neu on viola. And check out The First Four Notes, Matthew Guerrieri's book on Beethoven's Fifth. Support Radiolab today at Radiolab.org/donate.