Nav: Home

The apple maggot fly -- how an altered sense of smell could drive the formation of new species

January 25, 2017

"Two months ago, we were congratulating ourselves on a fair crop of winterapples. To all appearance, they were freer from worms than we had known them in this section for years. But, alas! our hopes are again blasted. The apple-maggot seems to be as prolific as ever. Two weeks ago, we overhauled two hundred and fifty bushels of apples that we had gathered and placed in store for winter use; and of that number we threw out fifty bushels, most of which had been rendered worthless; and still the work of destruction goes on. The depredations of the apple-maggot continue, converting the pulp of the apple into a mere honeycomb, and rendering another overhauling soon indispensable."

-An excerpt from the November 1866 issue of "The Circular" of the Oneida Community, published at Wallingford, United States of America as printed in "The Apple Maggot" by B. A. Porter

Roughly 180 years ago, some hawthorn fruit flies in the Eastern coast of North America smelt the fruits on apple trees - a fairly recent import into that region from Europe - and found them attractive. Today, nearly 2 centuries later, the flies have evolved into two distinct 'tribes'. One tribe, called hawthorn flies, prefer to use native North American hawthorn fruit to lay their eggs on, while the other, called apple flies attack crops of domesticated apples. Apple flies are currently one of the greatest pest threats to apple production in Northeast America and Canada.

But how did the split amongst these fruit flies come about?

A clue to how this divergence emerged has now been worked out by scientists from the University of Notre Dame, USA, and the National Centre for Biological Sciences (NCBS), Bangalore. Their study indicates that a minuscule change in the connections of two channels in the brain - one for detecting hawthorn odours and the other for apple odours - could have been a major cause for the switch in host fruit.

Hawthorn flies and apple flies are considered to be two races of the species complex Rhagoletis pomonella. The flies are textbook examples for the process of sympatric speciation, a process by which new species evolve in the same geographic region from a common ancestor species. The two races of flies maintain separate populations on the basis of preferred host fruits, which they detect through smells - apple flies prefer apple scents, while hawthorn flies prefer hawthorn fruit smells.

"Changes in behaviour can lead to the evolution of new species, particularly when these behaviours influence habitat choice. Yet the neural bases for such changes are relatively unknown," says Shannon Olsson, who heads a laboratory on chemical ecology at NCBS and was involved in this study. A major factor that has limited scientists' understanding of how these races could be evolving was a prior inability to study their nervous systems closely.

For the first time, researchers in this study have investigated the differences at a sensory level between two populations in the process of differentiating into distinct species. To gain a neurosensory perspective on how the distinct preferences for apples and hawthorn fruits arose in these flies, the scientists began by examining how nerve cells on the antennae of apple flies and hawthorn flies react to the different fruits' scents.

The team identified 28 classes of nerve cells called Olfactory Sensory Neurons or OSNs that responded to different combinations of odours. Amongst this set, were a small collection of OSNs that responded to key chemicals from apple and hawthorn fruit. Previous studies had identified the two chemicals - butyl hexanoate in apple odours and 3-methyl-1-butanol in hawthorn fruit odours - to be most important in attracting apple and hawthorn flies respectively.

While testing this smaller subset of nerve cells with these chemicals, the researchers found a startling pattern. Just two pairs of OSNs located in the same area of the fly antenna, could be the cause of apple and hawthorn flies' specific preferences.

The results of this study, published in the journal Proceedings of the Royal Society B, essentially suggests that a tiny switch in the wiring of two channels in the brain - one coding for detection of hawthorn odours, and one for apple, could have created a change in host fruit preference. This change in behavioural preference has seeded the beginnings of speciation by keeping apple flies and hawthorn flies as separated populations, isolated from each other.

"Our work is significant in its implication that even for such complex behaviors as host choice, tiny changes in the nervous system can have dramatic effects on a species, even on an evolutionary timescale," says Olsson. "This finding thus has implications beyond evolution for our understanding of the relationships between the brain, behaviour, and animal ecology - especially in the case of native species' response to an introduced, foreign species - a big issue for us in India," she adds.

National Centre for Biological Sciences

Related Evolution Articles:

An evolution in the understanding of evolution
In an open-source research paper, a UVA Engineering professor and her former Ph.D. student share a new, more accurate method for modeling evolutionary change.
Chemical evolution -- One-pot wonder
Before life, there was RNA: Scientists at Ludwig-Maximilians-Universitaet (LMU) in Munich show how the four different letters of this genetic alphabet could be created from simple precursor molecules on early Earth -- under the same environmental conditions.
Catching evolution in the act
Researchers have produced some of the first evidence that shows that artificial selection and natural selection act on the same genes, a hypothesis predicted by Charles Darwin in 1859.
Guppies teach us why evolution happens
New study on guppies shows that animals evolve in response the the environment they create in the absence of predators, rather than in response to the risk of being eaten.
Undercover evolution
Our individuality is encrypted in our DNA, but it is deeper than expected.
Evolution designed by parasites
In 'Invisible Designers: Brain Evolution Through the Lens of Parasite Manipulation,' published in the September 2019 issue of The Quarterly Review of Biology, Marco Del Giudice explores an overlooked aspect of the relationship between parasites and their hosts by systematically discussing the ways in which parasitic behavior manipulation may encourage the evolution of mechanisms in the host's nervous and endocrine systems.
Tracing the evolution of vision
The function of the visual photopigment rhodopsin and its action in the retina to facilitate vision is well understood.
Directed evolution comes to plants
Accelerating plant evolution with CRISPR paves the way for breeders to engineer new crop varieties.
Pain free, thanks to evolution
African mole-rats are insensitive to many different kinds of pain.
Evolution in the gut
Evolution and dietary habits interact and determine the composition of bacteria in the digestive tract.
More Evolution News and Evolution Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.