Nav: Home

NIH advances understanding of defenses against antibiotic-resistant klebsiella bacteria

January 25, 2017

WHAT:

Klebsiella bacteria cause about 10 percent of all hospital-acquired infections in the United States. K. pneumoniae sequence type 258 (ST258) is one of the Carbapenem-Resistant Enterobacteriaceae organisms labeled an urgent threat by the Centers for Disease Control and Prevention. This strain of bacteria is particularly concerning because it is resistant to most antibiotics and kills nearly half of people with bloodstream infections.

National Institutes of Health (NIH) scientists and their colleagues seeking alternatives to antibiotics report that an antibody-based therapy approach may be useful against ST258 bacteria. Studies of modified human blood samples showed that a component of the innate immune system called the complement system is pivotal to killing ST258. The complement system includes nine proteins (C1-9) that help protect against bacterial infections, a process aided by antibodies.

Their study determined that killing of ST258 corresponds with a portion of the complement system known as the membrane attack complex (C5b-C9), which contacts bacterial surfaces. Blood depleted of antibodies and/or the complement system had a significantly reduced ability to kill antibiotic-resistant ST258 bacteria.

The scientists, ultimately hoping to develop new tools to treat and prevent these infections, now plan to test a modified antibody against ST258 in laboratory blood and animal infection models. They also plan to learn more about the complement system in people with K. pneumoniae bloodstream infections. They note that ST258 bacteria reside harmlessly in most healthy people; infection is usually of significant concern only for those in healthcare settings suffering from co-existing conditions or diseases.
-end-
Scientists at NIH's National Institute of Allergy and Infectious Diseases (NIAID) led the study with collaborators from New Jersey Medical School-Rutgers University.

ARTICLE:

F DeLeo et al. Survival of carbapenem-resistant ST258 Klebsiella pneumoniae in human blood. Antimicrobial Agents and Chemotherapy DOI: 10.1128/AAC.02533-16 (2017).

WHO:

Frank DeLeo, Ph.D., chief of NIAID's Laboratory of Bacteriology, is available for comment. Dr. DeLeo is an expert in neutrophil biology and bacterial pathogenesis.

CONTACT:

To schedule interviews, please contact Ken Pekoc, (301) 402-1663, kpekoc@niaid.nih.gov.

NIAID conducts and supports research -- at NIH, throughout the United States, and worldwide -- to study the causes of infectious and immune-mediated diseases, and to develop better means of preventing, diagnosing and treating these illnesses. News releases, fact sheets and other NIAID-related materials are available on the NIAID website.

About the National Institutes of Health (NIH): NIH, the nation's medical research agency, includes 27 Institutes and Centers and is a component of the U.S. Department of Health and Human Services. NIH is the primary federal agency conducting and supporting basic, clinical, and translational medical research, and is investigating the causes, treatments, and cures for both common and rare diseases. For more information about NIH and its programs, visit http://www.nih.gov/.

NIH...Turning Discovery Into Health®

NIH/National Institute of Allergy and Infectious Diseases

Related Bacteria Articles:

How bees live with bacteria
More than 90 percent of all bee species are not organized in colonies, but fight their way through life alone.
The bacteria building your baby
Australian researchers have laid to rest a longstanding controversy: is the womb sterile?
Detecting bacteria in space
A new genomic approach provides a glimpse into the diverse bacterial ecosystem on the International Space Station.
Hopping bacteria
Scientists have long known that key models of bacterial movement in real-world conditions are flawed.
Bacteria uses viral weapon against other bacteria
Bacterial cells use both a virus -- traditionally thought to be an enemy -- and a prehistoric viral protein to kill other bacteria that competes with it for food according to an international team of researchers who believe this has potential implications for future infectious disease treatment.
Drug diversity in bacteria
Bacteria produce a cocktail of various bioactive natural products in order to survive in hostile environments with competing (micro)organisms.
Bacteria walk (a bit) like we do
EPFL biophysicists have been able to directly study the way bacteria move on surfaces, revealing a molecular machinery reminiscent of motor reflexes.
Using bacteria to create a water filter that kills bacteria
Engineers have created a bacteria-filtering membrane using graphene oxide and bacterial nanocellulose.
Probiotics are not always 'good bacteria'
Researchers from the Cockrell School of Engineering were able to shed light on a part of the human body - the digestive system -- where many questions remain unanswered.
A chink in bacteria's armor
Scientists have untangled the structure of a recently discovered bacterial wall-building protein, found in nearly all bacteria.
More Bacteria News and Bacteria Current Events

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Rethinking Anger
Anger is universal and complex: it can be quiet, festering, justified, vengeful, and destructive. This hour, TED speakers explore the many sides of anger, why we need it, and who's allowed to feel it. Guests include psychologists Ryan Martin and Russell Kolts, writer Soraya Chemaly, former talk radio host Lisa Fritsch, and business professor Dan Moshavi.
Now Playing: Science for the People

#538 Nobels and Astrophysics
This week we start with this year's physics Nobel Prize awarded to Jim Peebles, Michel Mayor, and Didier Queloz and finish with a discussion of the Nobel Prizes as a way to award and highlight important science. Are they still relevant? When science breakthroughs are built on the backs of hundreds -- and sometimes thousands -- of people's hard work, how do you pick just three to highlight? Join host Rachelle Saunders and astrophysicist, author, and science communicator Ethan Siegel for their chat about astrophysics and Nobel Prizes.