Nav: Home

Using Big Data to understand immune system responses

January 25, 2017

Numerous researchers around the globe have begun to use the gene editing tool CRISPR to understand human biology. One of them is Associate Professor Richard Kandasamy at the Norwegian University of Science and Technology's (NTNU) Centre of Molecular Inflammation Research (CEMIR). Kandasamy is working on understanding inflammatory reactions that occur in many diseases.

Using large amounts of data, his research reveals what happens minute-by-minute when the immune system responds to a virus. The results of his team's research were recently published in the respected online journal Systems Biology and Applications.

When the flu or any other virus attacks the body, it has to react with lightning speed.

"It's not like defense cells are just sitting around waiting in some corner of the body to gobble up viruses - and boom, it's all taken care of," says Kandasamy.

As Kandasamy explains, "What happens inside the defense cells is a very comprehensive step-by-step reaction. Signals are sent to the nucleus to initiate a production of new proteins that will take part in the inflammatory reaction and that the cell will use to destroy the virus. This all takes some time. But even a tiny chemical modification of proteins in the cell also enables the cell to start reacting super quickly."

He and his team can map these reactions in extreme detail from the moment a virus infects a cell. By frequently repeating the mapping process in the hours after infection, they can create a detailed map of the cell's reactions.

Most scientists who are working on CRISPR research either proceed by analysing one gene at a time, or upwards of 20,000 genes at a time. Kandasamy uses both approaches.

He also uses large computing systems to analyse this complex dataset. This approach of combining modern technologies and mapping reactions minute-by-minute is one of the unique approaches his research group uses to understand reactions in the cell.

Kandasamy came to NTNU through the Onsager Fellowship programme, which is designed to recruit some of the most talented international young researchers to the university. Just before Christmas, Kandasamy was awarded a generous grant for independent research from the Research Council of Norway's FRIPRO programme for promising young researchers.
-end-
Reference: A time-resolved molecular map of the macrophage response to VSV infection. n Richard K Kandasamy, Gregory I Vladimer, Berend Snijder, André C Müller, Manuele Rebsamen, Johannes W Bigenzahn, Anna Moskovskich, Monika Sabler, Adrijana Stefanovic, Stefania Scorzoni, Manuela Brückner, Thomas Penz, Ciara Cleary, Robert Kralovics, Jacques Colinge, Keiryn L Bennett & Giulio Superti-Furga. npj Systems Biology and Applications 2, Article number: 16027 (2016). doi:10.1038/npjsba.2016.27

Norwegian University of Science and Technology

Related Proteins Articles:

Discovering, counting, cataloguing proteins
Scientists describe a well-defined mitochondrial proteome in baker's yeast.
Interrogating proteins
Scientists from the University of Bristol have designed a new protein structure, and are using it to understand how protein structures are stabilized.
Ancient proteins studied in detail
How did protein interactions arise and how have they developed?
What can we learn from dinosaur proteins?
Researchers recently confirmed it is possible to extract proteins from 80-million-year-old dinosaur bones.
Relocation of proteins with a new nanobody tool
Researchers at the Biozentrum of the University of Basel have developed a new method by which proteins can be transported to a new location in a cell.
Proteins that can take the heat
Ancient proteins may offer clues on how to engineer proteins that can withstand the high temperatures required in industrial applications, according to new research published in the Proceedings of the National Academy of Sciences.
Designer proteins fold DNA
Florian Praetorius and Professor Hendrik Dietz of the Technical University of Munich have developed a new method that can be used to construct custom hybrid structures using DNA and proteins.
The proteins that domesticated our genomes
EPFL scientists have carried out a genomic and evolutionary study of a large and enigmatic family of human proteins, to demonstrate that it is responsible for harnessing the millions of transposable elements in the human genome.
Rare proteins collapse earlier
Some organisms are able to survive in hot springs, while others can only live at mild temperatures because their proteins aren't able to withstand such extreme heat.
How proteins reshape cell membranes
Small 'bubbles' frequently form on membranes of cells and are taken up into their interior.

Related Proteins Reading:

Best Science Podcasts 2019

We have hand picked the best science podcasts for 2019. Sit back and enjoy new science podcasts updated daily from your favorite science news services and scientists.
Now Playing: TED Radio Hour

Digital Manipulation
Technology has reshaped our lives in amazing ways. But at what cost? This hour, TED speakers reveal how what we see, read, believe — even how we vote — can be manipulated by the technology we use. Guests include journalist Carole Cadwalladr, consumer advocate Finn Myrstad, writer and marketing professor Scott Galloway, behavioral designer Nir Eyal, and computer graphics researcher Doug Roble.
Now Playing: Science for the People

#530 Why Aren't We Dead Yet?
We only notice our immune systems when they aren't working properly, or when they're under attack. How does our immune system understand what bits of us are us, and what bits are invading germs and viruses? How different are human immune systems from the immune systems of other creatures? And is the immune system so often the target of sketchy medical advice? Those questions and more, this week in our conversation with author Idan Ben-Barak about his book "Why Aren't We Dead Yet?: The Survivor’s Guide to the Immune System".